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1 1-D Wave Equation : Physical derivation 

Reference: Guenther & Lee §1.2, Myint-U & Debnath §2.1-2.4 

[Oct. 3, 2006] 

We consider a string of length l with ends fixed, and rest state coinciding with 

x-axis. The string is plucked into oscillation. Let u (x, t) be the position of the string 

at time t. 

Assumptions: 

1. Small oscillations, i.e. the displacement u (x, t) is small compared to the length 

l. 

(a) Points move vertically. In general, we don’t know that points on the string 

move vertically. By assuming the oscillations are small, we assume the 

points move vertically. 

(b) Slope of tangent to the string is small everywhere, i.e. |ux (x, t)| ≪ 1, so 

stretching of the string is negligible 
∫ l √ 

(c) arc length α (t) = 1 + u2 dx ≃ l.
0 x

2. String is perfectly flexible (it bends). This implies the tension is in the tan­

gent direction and the horizontal tension is constant, or else there would be a 

preferred direction of motion for the string. 

Consider an element of the string between x and x + Δx. Let T (x, t) be tension 

and θ (x, t) be the angle wrt the horizontal x-axis. Note that 

∂u 
tan θ (x, t) = slope of tangent at (x, t) in ux-plane = (x, t) . (1) 

∂x 
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Newton’s Second Law (F = ma) states that


∂2u 
F = (ρΔx) (2) 

∂t2 

where ρ is the linear density of the string (ML−1) and Δx is the length of the segment. 

The force comes from the tension in the string only - we ignore any external forces 

such as gravity. The horizontal tension is constant, and hence it is the vertical tension 

that moves the string vertically (obvious). 

Balancing the forces in the horizontal direction gives 

T (x + Δx, t) cos θ (x + Δx, t) = T (x, t) cos θ (x, t) = τ = const (3) 

where τ is the constant horizontal tension. Balancing the forces in the vertical direc­

tion yields 

F	 = T (x + Δx, t) sin θ (x + Δx, t) − T (x, t) sin θ (x, t) 

= T (x + Δx, t) cos θ (x + Δx, t) tan θ (x + Δx, t) − T (x, t) cos θ (x, t) tan θ (x, t) 

Substituting (3) and (1) yields 

F = τ (tan θ (x + Δx, t) − tan θ (x, t)) 
∂u	 ∂u 

=	 τ (x + Δx, t) − (x, t) .	 (4) 
∂x	 ∂x 

Substituting F from (2) into Eq. (4) and dividing by Δx gives 

∂2 ∂u	 ∂u 

(ξ, t) = τ ∂x 
(x + Δx, t) −

∂x 
(x, t)u 

ρ 
∂t2	 Δx 

for ξ ∈ [x, x + Δx]. Letting Δx 0 gives the 1-D Wave Equation →

∂2u 2 ∂
2u 2 τ 

= c , c = > 0.	 (5) 
∂t2 ∂x2 ρ 

[ ]1/2 
Force Note that c has units [c] = 

Density = LT −1 of speed. 

1.1 Boundary conditions 

Ref: Guenther & Lee §4.2 (p. 94), Myint-U & Debnath §4.4 

In order to guarantee that Eq. (5) has a unique solution, we need initial and 

boundary conditions on the displacement u (x, t). There are now 2 initial conditions 

and 2 boundary conditions. 
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E.g. The string is fixed at both ends, u (0, t) = u (l, t) = 0, t > 0 (homogeneous 

type I BCs) 

E.g. The string is connected to frictionless cylinders of mass m that move vertically 

on tracks at x = 0, l. Performing a force balance at either x = 0 or x = 1 gives 

T sin θ = mg (6) 

In other words, the vertical tension in the string balances the mass of the cylinder. 

But τ = T cos θ = const and tan θ = ux, so that (6) becomes 

τux = T cos θ tan θ = mg 

Rearranging yields 
mg 

, x = 0, 1ux = 
τ 

These are Type II BCs. If the string is really tight and the cylinders are very light, 

then mg/τ ≪ 1 and we approximate ux ≈ 0 at x = 0, 1, and the BCs become Type 

II homogeneous BCs. 

1.2 Initial conditions 

Ref: Guenther & Lee §4.2 (p. 94) 

We need to specify both the initial position of the string and the initial velocity: 

u (x, 0) = f (x) and ut (x, 0) = g (x), 0 < x < l. The idea is the same as finding 

the trajectory of a falling body; we need to know both the initial position and initial 

velocity of the particle to compute its trajectory. We can also see this mathematically. 

The Taylor series of u (x, t) about t = 0 is 

t2 ∂3u t3 

u (x, t) = u (x, 0) + ut (x, 0) t + utt (x, 0) + (x, 0) + 
2 ∂t3 3! 

· · · 

From the initial conditions, u (x, 0) = f (x), ut (x, 0) = g (x) and the PDE gives 

utt (x, 0) = c 2 uxx (x, 0) = c 2f ′′ (x) , 
∂3u 2 2 ′′ (x, 0) = c utxx (x, 0) = c g (x) . 
∂t3 

Higher order terms can be found similarly. Therefore, the two initial conditions for 

u (x, 0) and ut (x, 0) are sufficient to determine u (x, t) near t = 0. 

To summarize, the dimensional basic 1-D Wave Problem with Type I BCs (fixed 

ends) is 

PDE : utt = c 2 uxx, 0 < x < l (7) 

BC : u (0, t) = 0 = u (l, t) , t > 0, (8) 

IC : u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 < x < l (9) 
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1.3 Non-dimensionalization 

We now scale the basic 1-D Wave Problem. The characteristic quantities are length 

L∗ and time T∗. Common sense suggests choosing L∗ = l, the length of the string. 

We introducing the non-dimensional variables 

x t ( ) u (x, t) f (x) T∗g (x) 
x̂ = , t̂ = , ˆ ˆ t = , x) = , g (ˆ =u x, ̂ f̂ (ˆ ˆ x) . 

L∗ T∗ L∗ L∗ L∗ 

From the chain rule, 

∂u ∂û ∂x̂ ∂û ∂u ∂û ∂t̂ L∗ ∂û
= L∗ = = L∗ = 

∂x ∂x̂ ∂x ∂x̂
, 

∂t ∂t̂ ∂t T∗ ∂t̂

and similarly for higher derivatives. Substituting the dimensionless variables into 1-D 

Wave Equation (7) gives 
T 2c2 
∗ ût̂t̂ = ûx̂x̂
L2 
∗ 

This suggests choosing T∗ = L∗/c = l/c, so that 

û t̂ = ˆxˆ 0 x < 1, t > 0. (10) tˆ uˆx, < ˆ ˆ

The BCs (8) become 

û 0, ̂ = 0 = u 1, ̂ , t > 0.t ˆ t ˆ (11) 

The ICs (9) become 

û (ˆ = x) , ut̂ x, 0) = ˆ x) , 0 < ˆ (12) x, 0) f̂ (ˆ ˆ (ˆ g (ˆ x < 1. 

1.3.1 Dimensionless 1-D Wave Problem with fixed ends 

Dropping hats, the dimensionless 1-D Wave Problem is, from (10) – (12), 

PDE : utt = uxx, 0 < x < 1 (13) 

BC : u (0, t) = 0 = u (1, t) , t > 0, (14) 

IC : u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 < x < 1 (15) 

2 Separation of variables solution 

Ref: Guenther & Lee §4.2, Myint-U & Debnath §6.2, and §7.1 – 7.3 

Substituting u (x, t) = X (x)T (t) into the PDE (13) and dividing by X (x)T (t) 

gives 
T ′′ (t) X ′′ (x) 

T (t)
= 

X (x)
= −λ (16) 
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∑ 

∑ 

where λ is a constant. The negative sign is for convention. The BCs (14) become


u (0, t) = X (0)T (t) = 0 

u (1, t) = X (1)T (t) = 0 

which implies 

X (0) = X (1) = 0 (17) 

Thus, the problem for X (x) is the same Sturm-Liouville Boundary Value Problem as 

for the Heat Equation, 

′′ X (x) + λX (x) = 0; X (0) = X (1) = 0. (18) 

Recall that the eigenvalues and eigenfunctions of (18) are 

2λn = (nπ) , Xn (x) = bn sin (nπx) , n = 1, 2, 3, ... 

The function T (t) satisfies 
′′ T + λT = 0 

and hence each eigenvalue λn corresponds to a solution Tn (t) 

Tn (t) = αn cos (nπt) + βn sin (nπt) . 

Thus, a solution to the PDE and BCs is 

un (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 

where we have absorbed the constant bn into αn, βn. 

In general, the individual un (x, t)’s will not satisfy the ICs. Thus we sum infinitely 

many of them, using the principle of superposition, 

∞ ∞ 

u (x, t) = un (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 
n=1 n=1 

Imposing the ICs gives 

∞ 

f (x) = u (x, 0) = αn sin (nπx) 
n=1 
∞ 

g (x) = ut (x, 0) = nπβn sin (nπx) 
n=1 

Therefore, the coefficients αn and βn are given by 
∫ 1 

αn = 2 f (x) sin (nπx) dx 
0 

2 
∫ 1 

βn = g (x) sin (nπx) dx 
nπ 0 
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Note: The convergence of this series is harder to show, because we don’t have 
−ndecaying exponentials e

2π2t in the sum terms (more later). 

Note: Given BCs and an IC, the wave equation has a unique solution (Myint-U 

& Debnath §6.3). 

3 Interpretation - Normal modes of vibration 

[Oct 5, 2006] 

Ref: Guenther & Lee p. 100 problem 5 

The terms 

un (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 

for n = 1, 2, 3, ... are called the normal modes of vibration. The solution u (x, t) is a 

superposition of the normal modes un (x, t). In physical variables, the normal modes 

are 
( ) 

( (nπc ) (nπc )) nπx′ 
u ′ n (x ′ , t ′ ) = αn cos t ′ + βn sin t ′ sin . 

l l l 

3.1 Frequency and Period 

A function f (t) is periodic if for some real number T , 

f (t + T ) = f (t) 

for all t. If t measures time (either physical or dimensionless), we define the period 

of a function as the smallest number T such that f (t + T ) = f (t). We say that f (t) 

has period T or, equivalently, that f (t) is T -periodic. The period T has the same 

dimensions as t. If t is dimensionless then so is T ; if t has the dimensions of time, 

so does T . Note that each normal mode un (x, t) has period 2/n, and in physical 

variables, un 
′ (x ′ , t ′) has period 2l/ (nc). 

The analog to period for spatial coordinates is the wavelength. The wavelength of 

a function g (x) (x is a scaled or physical spatial coordinate) is defined as the smallest 

L such that g (x + L) = g (x). We say g (x) is L-periodic. Again, the wavelength 

L has the same dimensions as x. If x is dimensionless then so is L; if x has the 

dimensions of length, so does L. 

The frequency f is defined as f = 1/T = 1/period. In physical variables, each 

normal mode un 
′ (x ′ , t ′) has frequency 

ωn nc n τ 
= =fn = 

2π 2l 2l ρ 
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( ) 

( ) 

( ) 
√ 

∑ ∑ 

√ 

with dimensions 1/time (e.g. Hz = cycle/sec = sec−1). 

The angular frequency is defined as ω = 2πf where f is the frequency. Each mode 

has angular frequency ωn = 2πfn = nπc/l. In terms of the frequency, we can write 

the normal mode as 

( (πnc ) (nπc )) nπx′ 
u ′ (x ′ , t ′ ) = αn cos t ′ + βn sin t ′ sin n l l l 

nπx′ 
= (αn cos (2πfnt 

′ ) + βn sin (2πfnt 
′ )) sin 

l 
nπx′ 

= (αn cos (ωnt 
′ ) + βn sin (ωnt 

′ )) sin 
l 

The first harmonic is the normal mode of lowest frequency, u1 (x, t) or in physical 

variables, u1 
′ (x ′ , t ′). 

The fundamental frequency is f1, i.e. the frequency of the first harmonic. In 

dimensionless variables, f1 = 1/2. In physical variables, f1 
′ = c/ (2l) = τ/ρ /2l. 

Note that fn = nf1, in other words, the frequencies of higher harmonics are just 

integer multiples of the fundamental frequency f1. 

Examples. Check for yourself that sin (πx) is 2-periodic i.e. has period 2, sin (x) 

is 2π-periodic, sin (nπt) is 2/n-periodic, sin (nπct/l) has period 2l/ (nc), sin (nπx/l) 

has period 2l/n. Note that if a function has period T , then f (t + mT ) = f (t) for all 

m = 1, 2, 3, .... In particular, 

sin (nπx) , cos (nπx) , sin (nπt) , cos (nπt) 

are all 2/n-periodic, and hence 

( ( )) ( ( )) 
2m 2m 

sin nπ x + = sin nπx, cos nπ x + = cosnπx 
n n 

( ( )) ( ( )) 
2m 2m 

sin nπ t + = sin nπt, cos nπ t + = cosnπt 
n n 

for all m,n = 1, 2, 3, .. Therefore, the dimensionless solution u (x, t) of the wave 

equation has time period 2 (u (x, t + 2) = u (x, t)) since 

∞ ∞ 

u (x, t) = un (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 
n=1 n=1 

and for each normal mode, un (x, t) = un (x, t + 2) (check for yourself). Thus, the 

period of u (x, t) is the same as that for the first harmonic u1 (x, t). In physical 

variables, the period of u ′ (x ′ , t ′ ) is T1 
′ = 2l/c = 2l/ τ/ρ and the frequency is f1 

′ = 

1/T 1 
′ = c/ (2l). 
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√ ( ) 
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3.2 A note on dimensions 

I’ve tried to denote dimensional quantities with primes or specifically comment whether 

or not we are working with physical x, t (a length and time) or with dimensionless x, 

t (dimensions 1). However, in general you should always ask the question, “What are 

the dimensions?” The quantity c/l has dimensions of 1/time since I have defined c, l 

to be a speed and a length. The argument of any mathematical function like cos, sin, 

exp, etc. must be dimensionless. The cosine of 1 m or 2 s does not make sense. Thus, 

the quantity t in cos (nπt) is dimensionless. Note that radians are a dimensionless 
πct measure of angle. Consider the quantity t in cos (ωt) or cos (2πft) or cos 
l 

, where 

you are given that ω and f have dimensions of 1/time, c is a speed, and l is a length. 

Then t must have dimensions of time, so that the arguments ωt, 2πft, or πct/l of 

cosine are dimensionless. 

3.3 Amplitude 

Note that un (x, t) can be written 

un (x, t) = γn sin (nπx) sin (nπt + ψn) (19) 

α2 αn . At each point x, the n’th mode vibrates where γn = n + βn
2 , ψn = arctan 

βn 

sinusoidally according to 

un (x, t) = An (x) sin (nπt + ψn) 

where 

An (x) = γn sin (nπx) . 

The mode un (x, t) vibrates sinusoidally in time between the two limits ±An (x). We 

call A (x) the time amplitude of the mode un (x, t), since this sets the bounds on the 

oscillations in time. Locations where An (x) = 0 are called nodes and locations where 

|An (x)| = γn are called antinodes. 

4 Conservative system and energy 

Ref: Guenther & Lee p. 102, Myint-U & Debnath §4.12 (problem 28 p. 97, 1987) 

Recall the solution to the Heat Problem with a homogeneous PDE (i.e. no sources, 

sinks) Homogenous Type I BCs (u = 0 at x = 0, 1) is 

∞ 

u (x, t) = Bn sin (nπx) e −n2π2t 

n=1 

8




∑ 

√ 

( ( )) 

and as t → ∞, u (x, t) 0. Thus, the rod looses heat energy and with it the memory →
of the initial state, or initial condition. 

In contrast, the solution to the wave equation with Homogeneous Type I BCs 

(fixed ends, u = 0 at x = 0, 1), 

∞ 

u (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 
n=1 

The oscillations do not decay, since we ignored gravity and resistive forces. Once 

plucked, the string vibrates/oscillates forever, with period 2l/c in physical coordi­

nates. We call this type of system conservative: energy is conserved. In addition, the 

system comes back to its initial condition periodically - i.e. it maintains a memory 

of its initial state. 

We define the energy of the system as 

Total energy E ′ (t ′ ) = PE ′ (t ′ ) +KE ′ (t ′ ) 

where primes denote physical or dimensional variables. The local kinetic energy is 

( )2
1 1 ∂u 

KE ′ (x ′ , t ′ ) = 2 mv = (ρΔx)
2 2 ∂t 

and the local potential energy is 

PE ′ (x ′ , t ′ ) = work done getting to displacement u 

= Force change in length of string × 

Making a displacement Δu of a segment of string from x to x+Δx results in a change 

in the string segment length, initially of length Δx, of 

  
√ ( )2

Δu2 2 
Δl = (Δx) + (Δu) − Δx = Δx  1 + − 1 

Δx 

Recall the binomial expansion 
√

1 + a = 1 + 
2 

2 1 a2 + O (a4). Then 

( )2 ( )4 ( )2
1 Δu Δu Δx Δu 

Δl = Δx 1 + − 1 +O 
2 Δx Δx 

≈ 
2 Δx 

and hence the potential energy is 

( )2 ( )2
τ Δu τ ∂u 

PE ′ (x ′ , t ′ ) = τΔl ≈ ΔxΔx ≈
2 Δx 2 ∂x 
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∫ 
) 

( )


( ∫ 

) 

∫ 

as Δx 0. Thus, the total energy is, in dimensional form, →

E ′ (t ′ ) =
1 
∫ l ( 

∂u 
)2 ( 

∂u 
)2 

ρ 
∫ l 
( 

2 2 2 
) 

ρ + τ dx ′ = ut ′ + c ux ′ dx ′ (20) 
2 0 ∂t′ ∂x′ 2 0 

where we use the shorthand notation u2 
t ′ = (∂u/∂t′ )2 . Substituting c2 = τ/ρ and the 

dimensionless variables into (20) gives the dimensionless total energy 

E ′ (t ′) 1 1 
( 

2 2E (t) = = ut + ux dx (21) 
τ l 2 0 

4.1 Conservation of energy for a single mode 

[Oct 17, 2006] 

The energy of a given normal mode un (x, t) is found by substituting the form (19) 

into Eq. (21) for the energy, 

1 
∫ 1 ( 

∂un 

)2 ( 
∂un 

)2


En (t) = + dx 
2 0 ∂t ∂x 

=
(nπγn)2 ∫ 1 

( 
sin2 (nπx) cos2 (nπt + ψn) + cos 2 (nπx) sin2 (nπt + ψn) 

) 
dx 

2 0 

(nπγn)2 1 

= cos 2 (nπt + ψn) sin2 (nπx) dx 
2 0 

∫ 1 

+ sin2 (nπt + ψn) cos 2 (nπx) dx 
0 

Note that 

1 1 1 1 
sin2 (nπx) =

2 
−

2
cos (2nπx) , cos 2 (nπx) =

2
+

2
cos (2nπx) 

so that 
∫ 1 11 1 

sin2 (nπx) dx = , cos 2 (nπx) dx = 
2 20 0 

Substituting these integrals into the energy En (t) gives 

2 2 

En (t) =
(nπγn) ( 

cos 2 (nπt + ψn) + sin2 (nπt + ψn) 
) 

=
(nπγn)

. 
4 4 

Thus the total energy (kinetic + potential across the rod) of each mode is constant! 

4.2 Energy conservation for multi-mode wave 

To show the energy for a multi-mode wave is conserved, we proceed as follows. Dif­

ferentiating the dimensionless energy equation (21) gives 

dE 
∫ 1 

= (ututt + uxuxt) dx 
dt 0 
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( ) 
∑ ∑ 

∑ ∑ ∫ ( ) 

∑ ∑ 

∑ ∑ 

Replacing utt = uxx (the wave PDE) gives 

dE 
∫ 1 

= (utuxx + uxuxt) dx 
dt 0 

∫ 1 

= (utux)x dx 
0 

1 = [utux]x=0 (22) 

Differentiating the BCs in time t gives 

d d 
u (0, t) = 0, u (1, t) = 0 

dt dt 

Therefore, (22) becomes 
dE 

= 0 (23) 
dt 

Thus 
1 
∫ 1 { 

′ 2 2 
} 

E(t) = const = E (0) = (f (x)) + (g (x)) dx. 
2 0 

Thus the energy of a multi-mode wave system remains constant in time. This is 

not surprising, since all the forces involved are conservative; we have not included 

damping or dissipative forces. 

An alternate method to show E (t) = const employs the infinite series solution 

derived using the method of separation of variables: 

  
( )2 ( )2 

1 
∫ 1 ∂ ∑ ∂ 
E (t) = un + un 

 dx 
2 ∂t ∂x 0 n=1 n=1 

1 
∫ 1 ∂un ∂um ∂un ∂um 

= + dx 
2 0 ∂t ∂t ∂x ∂x 

n=1 m=1 

1 1 ∂un ∂um ∂un ∂um 
= + dx 

2 0 ∂t ∂t ∂x ∂x 
n=1 m=1 

Substituting for the normal modes un (x, t) = γn sin (nπx) sin (nπt + ψn) gives 

1 
E (t) = γnγmnmπ

2 cos (nπt + ψn) cos (mπt + ψm)
2 

n=1 m=1 
∫ 1 

× 
0 

sin (nπx) sin (mπx) dx 

1 
+ γnγmnmπ

2 sin (nπt + ψn) sin (mπt + ψm)
2 

n=1 m=1 
∫ 1 

× 
0 

cos (nπx) cos (mπx) dx 

11 



∑ ∑ 

∑ 

∑ 

∑ 

Substituting the orthogonality relations gives 

1 
E (t) = γnγmnmπ

2 cos (nπt + ψn) cos (mπt + ψm) 
δmn 

2 2 
n=1 m=1 

1 ∑ δmn 
+ γnγmnmπ

2 sin (nπt + ψn) sin (mπt + ψm)
2 2 

n=1 m=1 

1 2 ( ) 
= (γnnπ) cos 2 (nπt + ψn) + sin2 (nπt + ψn)

4 
n=1 

1 2 = (γnnπ)
4 

n=1 

which is constant for all t. 

5 D’Alembert’s Solution for the wave equation 

Ref: Guenther & Lee §4.1, Myint-U & Debnath §4.3 

5.1 Motivation 

Note that each normal mode can be written in alternative form: 

un (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 
1 

= (αn sin (nπ (x − t)) − βn cos (nπ (x − t))) 
2 

1 
+ (αn sin (nπ (x + t)) + βn cos (nπ (x + t))) 

2 

where we used the trig identities 

sin (a + b) + sin (a − b) = 2 cos b sin a 

cos (a + b) − cos (a − b) = 2 sin a sin b 

Therefore, the mode un (x, t) is the sum of a function of (x − t) and a function of 

(x + t). In physical variables, we can write the solution as the sum of a function of 

x ′ − ct ′ and a function of x ′ + ct ′ . 

5.2 Change of variable 

We can define the new coordinates 

ξ = x − t, η = x + t (24) 

12 



( ) ( ) 

and let v (ξ, η) = u (x, t). The chain rule implies that 

∂u ∂v ∂ξ ∂v ∂η ∂v ∂v 
= + = + 

∂x ∂ξ ∂x ∂η ∂x ∂ξ ∂η 
∂u ∂v ∂ξ ∂v ∂η ∂v ∂v 
∂t 

= 
∂ξ ∂t 

+ 
∂η ∂t 

= −
∂ξ 

+ 
∂η 

Similarly, 

∂2u ∂ ∂v ∂ ∂v 
( 
∂2v ∂2v 

) ( 
∂2v ∂2v 

) 

= + = +	 + + 
∂x2	 ∂x ∂ξ ∂x ∂η ∂ξ2 ∂ξ∂η ∂ξ∂η ∂η2 

∂2v ∂2v ∂2v 
= + 2	 + 

∂ξ2 ∂ξ∂η ∂η2 

∂2
( 

∂2 ∂2
) ( 

∂2 ∂2
) 

u v v v v 
∂t2 

= − −
∂ξ2 

+ 
∂ξ∂η 

+ −
∂ξ∂η 

+ 
∂η2 

∂2v ∂2v ∂2v 
= 

∂ξ2 
− 2 

∂ξ∂η 
+ 
∂η2 

Substituting these derivatives into the PDE utt = uxx yields 

∂2v ∂2v ∂2v ∂2v ∂2v ∂2v 
= 

∂ξ2 
+ 2 

∂ξ∂η 
+ 
∂η2 ∂ξ2 

− 2 
∂ξ∂η 

+ 
∂η2 

Simplifying and dividing by 4 gives a new form of the wave equation, 

∂2v (ξ, η) 
= 0	 (25) 

∂ξ∂η 

5.3 Forward and backward waves 

We can write the new form (25) of the wave equation in two ways: 

∂ ∂v (ξ, η) ∂ ∂v (ξ, η) 
= 0, = 0 

∂ξ ∂η ∂η ∂ξ 

Integrating the first equation in ξ gives 

∂v (ξ, η) 
= G (η)	 (26) 

∂η 

for some function G (η) (due to partial integration with respect to ξ). Define the 

antiderivative of G (η) as Q (η), i.e. such that Q′ (η) = G (η). Substituting this into 

(26) and rearranging gives 

∂v (ξ, η)	 ∂ 
∂η	

⇒ 
∂η 

(v (ξ, η) −Q (η)) = 0= Q ′ (η) = 

13 
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Integrating the right equation in η yields 

v (ξ, η) −Q (η) = P (ξ) 

where the function P (ξ) is due to the partial integration with respect to η. Therefore, 

we can write 

v (ξ, η) = P (ξ) +Q (η) 

Substituting for η and ξ from (24) and recalling that u (x, t) = v (ξ, η) gives 

u (x, t) = v (ξ, η) = P (x − t) +Q (x + t) (27) 

5.3.1 Forward wave 

The forward wave is the function P (x − t) which represents a wave travelling in 

the positive x-direction with scaled velocity 1. In physical coordinates, the function 

depends on x − ct and the speed of the wave is c = τ/ρ. The shape of the wave is 

determined by the function P (x) and the motion is governed by the line x−t = const. 

The wave (same shape) moves forward in time along the string. 

How do we find the speed from the line x ′ − ct ′ = l1 = const? Well, in time Δt ′ , 

we’ve moved 

Δx ′ = (l1 + c (t ′ + Δt ′ )) − (l1 + ct ′ ) = cΔt ′ 

The speed is distance traveled over elapsed time: Δx ′/Δt ′ = c. 

5.3.2 Backward wave 

The backward wave is the function Q (x + t) which represents a wave travelling in the 

negative x-direction with scaled speed 1. The wave shape is determined by Q (x) and 

the value of the wave is constant along the lines x + t = const (in physical variables, 

x ′ + ct ′ = const and speed is c). 

5.4 Characteristics 

Ref: Myint-U & Debnath §3.2(A) 

The solution to the wave equation is the superposition of a forward wave P (x − t) 

and a backward wave Q (x + t), both with speed c. The lines x ± t = const are called 

characteristics. 
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5.5 Determining the shape functions 

The shapes of the forward and backward waves, P (x) and Q (x), are determined from 

the initial conditions, 

u (x, 0) = f (x) = P (x) +Q (x) , (28) 

ut (x, 0) = g (x) = −P ′ (x) +Q ′ (x) (29) 

To obtain the second equation, the chain rule was used: 

∂u 
ut (x, 0) = (x, t)

∂t t=0 

∂ 
= (P (x − t) +Q (x + t)) 

∂t t=0 

= [−P ′ (x − t) +Q ′ (x + t)]t=0 

= −P ′ (x) +Q ′ (x) 

It is important to differentiate in time first and then set t = 0 (that is what ut (x, 0) 

means!). Now, integrating (29) in x from 0 to x gives 
x 

Q (x) − P (x) − (Q (0) − P (0)) = g (s) ds (30) 
0 

Eqs. (28) and (30) can be solved for P (x) and Q (x): 

1 x 

Q (x) = 
2 

f (x) + 
0 
g (s) ds + Q (0) − P (0) (31) 

1 x 

P (x) = f (x) − g (s) ds −Q (0) + P (0) (32) 
2 0 

5.6 D’Alembert’s solution to the wave equation 

[Oct 19, 2006] 

Ref: Guenther & Lee §4.1, Myint-U & Debnath §4.3 

Summarizing our results: from (27), (31) and (32), the wave equation and initial 

conditions 

utt = uxx 

u (x, 0) = f (x) 

ut (x, 0) = g (x) 

has the solution 

1 1 
∫ x+t 

u (x, t) = P (x − t) +Q (x + t) =
2

[f (x − t) + f (x + t)] + 
2 x−t 

g (s) ds (33) 

This is called D’Alembert’s solution to the wave equation. We have not yet considered 

the BCs [we will soon], so right now we’re thinking about an infinite string. 
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5.6.1 Solution method and domain of dependence 

At a given position x = x0 on the string, the solution at time t = t0 is 

1 1 
∫ x0+t0 

u (x0, t0) = 
2

[f (x0 − t0) + f (x0 + t0)] + 
2 x0−t0 

g (s) ds. 

In other words, the solution is found by tracing backwards in time along the charac­

teristics x − t = x0 − t0 and x + t = x0 + t0 to the initial state (f (x), g (x)), then 

applying (33) to compute u (x0, t0) from the initial state. Information from the initial 

state from the interval x0 − t0 ≤ x ≤ x0 + t0 is all that is needed to find u (x0, t0). In 

the tx-plane, we can think of a triangle opening backwards in time from (x0, t0) to 

the line t = 0. Compare this to the rectangle {0 ≤ x ≤ 1, 0 ≤ t ≤ T } we required to 

find the solution u (x, T ) for the heat equation. 

For simpler forms of f (x) and g (x) the solution method can be simplified signif­

icantly, and only a handful of characteristics will be needed. 

5.6.2 Simplified solution method for infinite string 

For the examples we’ll be considering, f (x) and g (x) will be case functions. The 

general approach is then: 

Step 1. Write down D’Alembert’s solution, 

1 1 
∫ x+t 

u (x, t) = 
2

[f (x − t) + f (x + t)] + 
2 x−t 

g (s) ds 

Step 2. Identify the regions. In general, the function f (x) and g (x) are case 

functions. You need to determine various regions by plotting the salient characteristics 

x ± t = const. The regions determine where x − t and x + t are relative to the cases 

for the functions f (x) and g (x) and tells us what part of the case functions should 

be used in each region. 

Step 3. Determine the solution in each region. 

Step 4. For each specific time t = t0, write the x-intervals corresponding to the 

regions. 

For example, consider f (x) and g (x) of the following form, 

f (x) = 
F (x) , |x| ≤ 1 

, g (x) = 
G (x) , |x| ≤ 1 

(34) 
0, x > 1 0, x > 1| | | |

Step 1. D’Alembert’s solution to the wave equation is


1 1 
∫ x+t 

u (x, t) = 
2

[f (x − t) + f (x + t)] + 
2 x−t 

g (s) ds 
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Figure 1: Regions of interest separated by four characteristics. 

Step 2. Identify the regions. The functions f (x) and g (x) are equal to functions 

F (x) and G (x), respectively, for x 1 and are zero for x > 1. Thus, the regions | | ≤ |	 |
of interest are found by plotting the four characteristics x ± t = ±1 (Figure 1). The 

regions are identified in the plot, and are given mathematically by 

R1 = {(x, t) : −1 ≤ x − t ≤ 1 and − 1 ≤ x + t ≤ 1} 
R2 = {(x, t) : −1 ≤ x − t ≤ 1 and x + t ≥ 1} 
R3 = {(x, t) : x − t ≤ −1 and − 1 ≤ x + t ≤ 1} (35) 

R4 = {(x, t) : x − t ≤ −1 and x + t ≥ 1} 
R5 = {(x, t) : x + t ≤ −1} , 
R6 = {(x, t) : x − t ≥ 1} 

The regions determine where x − t and x + t are relative to ±1, which tells us what 

part of the case functions f (x) and g (x) should be used. It is helpful to define the 

lines 

xA (t) = −t − 1, xB (t) = t − 1, xC (t) = −t + 1, xD (t) = t + 1. 

Step 3. Consider the solution in each region. In R1, we have |x ± t| ≤ 1, so that 

(34) implies 

∫ x+t ∫ x+t 

f (x − t) = F (x − t) ,	 f (x + t) = F (x + t) , g (s) ds = G (s) ds, 
x−t x−t 
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∫ ∫ ∫ ∫ 

∫ ∫ 

∫ 

and hence

1 1 

∫ x+t 

u (x, t) = 
2

(F (x − t) + F (x + t)) + 
2 x−t 

G (s) ds. 

In region R2, we have −1 ≤ x − t ≤ 1 and x + t ≥ 1 so that 

f (x + t) = 0, f (x − t) = F (x − t) , 
∫ x+t 1 x+t 1 

g (s) ds = g (s) ds + g (s) ds = G (s) ds + 0, 
x−t x−t 1 x−t 

and hence 
F (x − t) 1 

∫ 1 

G (s) ds. u (x, t) = + 
2 2 x−t 

In region R3, we have −1 ≤ x + t ≤ 1 and x − t ≤ −1 so that 
∫ x+t ∫ x+t 

f (x + t) = F (x + t) , f (x − t) = 0, g (s) ds = G (s) ds, 
x−t −1 

and hence 
F (x + t) 1 

∫ x+t 

u (x, t) = + G (s) ds. 
2 2 

−1 

In region R4, x − t ≤ −1 and x + t ≥ 1, so that 

f (x + t) = 0 = f (x − t) , 
∫ x+t 1 1 x+t 1 

g (s) ds = g (s) ds + g (s) ds + g (s) ds = 0 + G (s) ds + 0, 
x−t x−t −1 1 −1 

and hence 
1 x+t 1 1


u (x, t) =
 g (s) ds = G (s) ds = const. 
2 x−t 2 

−1 

In regions R5 and R6, f (x + t) = 0 = f (x − t) and g (s) = 0 for s ∈ [x − t, x + t], 

hence u = 0. To summarize, 
 

1 1 
∫ x+t 

 (F (x − t) + F (x + t)) + G (s) ds, (x, t) ∈ R1 
 2 2 x−t 
 
 F (x−t) ∫ 1 
 1 G (s) ds, (x, t) ∈ R2 + 
 2 2 x−t 

u (x, t) = F (x
2
+t) + 

2
1 

−

x

1

+t 
G (s) ds, (x, t) ∈ R3 (36) 

 ∫ 
 1 1 
 
 G (s) ds, (x, t) ∈ R4 
 2 −1 
 
 0 (x, t) ∈ R5, R6 

Step 4. For each specific time t = t0, write the x-intervals corresponding to the 

intersection of the sets Rn with the line t = t0. This amounts to computing the values 

of xA (t), xB (t), xC (t), xD (t) for each time 

t 0 1/2 1 2 

xA (t) = −1 − t −1 −1.5 −2 −3 

xB (t) = t − 1 −1 −0.5 0 1 

xC (t) = −t + 1 1 0.5 0 −1 

xD (t) = t + 1 1 1.5 2 3 

(37)
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At t = 0, we use Table (37) and Figure 1 to find the x intervals Rn 
′ corresponding 

to the intersection of Rn with the line t = 0: 

R5 
′ = (−∞, −1], R1 

′ = [−1, 1] , R6 
′ = [1, ∞). 

In R1, we have (recall that t = 0), 

1 1 x+0 

u (x, 0) = 
2

(F (x − 0) + F (x + 0)) + 
2 x−0 

G (s) ds = F (x) 

Similarly, we can check that in the other regions, u = 0, so that (36) becomes 

u (x, 0) = 
F (x) , x ∈ R1 

′ = [−1, 1] 
= 

F (x) , |x| ≤ 1
= f (x)

0, x ∈ R5 
′ ∪R′ 

6 0, |x| > 1 

At t = 1/2, we use Table (37) and Figure 1 to find the x intervals R′ 

n corresponding 

to the intersection of Rn with the line t = 1/2: 

R5 = (−∞, −1.5], R1 = [−0.5, 0.5] , R6 = [1.5, ∞), (38) 

R3 = [−1.5, −0.5] , R2 = [0.5, 1.5] . (39) 

At t = 1, we use Table (37) and Figure 1 to find the x intervals Rn 
′ corresponding 

to the intersection of Rn with the line t = 1: 

R5 = (−∞, −2], R3 = [−2, 0] , R2 = [0, 2] , R6 = [2, ∞). (40) 

At t = 2, we use Table (37) and Figure 1 to find the x intervals Rn 
′ corresponding 

to the intersection of Rn with the line t = 2: 

R5 = (−∞, −3], R3 = [−3, −1] , R4 = [−1, 1] , R2 = [1, 3] , R6 = [3, ∞), 

(41) 

At this point, you usually want to draw the wave profiles for certain times t = t0 

(see problem set 3 for more). 

5.6.3 Worked example 

For an infinitely long string, consider giving the string zero initial displacement 

u (x, 0) = 0 and initial velocity ut (x, 0) = g (x). Suppose 

g (x) = 
cos2 

(

π 
2 

) 
−1 ≤ x ≤ 1x , 

0 otherwise 

The ICs have the form considered above for F (x) = 0 and G (x) = cos2 
(

π 
2 

) 
x . 
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Step 1. D’Alembert’s solution (33) becomes 

1 
∫ x+t 

u (x, t) = g (s) ds 
2 x−t 

Step 2. The regions are the same as those in (35) and are plotted in Figure 1 

above. 

Step 3. Determine u (x, t) in each region. From (36), we have 
 

1 
∫ x+t 

 G (s) ds, (x, t) ∈ R1 
 2 x−t 
 


∫ 1 
 1 G (s) ds, (x, t) ∈ R2 
 2 x−t 

u (x, t) = 1
2 −

x

1

+t 
G (s) ds, (x, t) ∈ R3 

 ∫ 
 1 1 
 
 G (s) ds, (x, t) ∈ R4 
 2 −1 
 
 0 (x, t) ∈ R5, R6 

Note that 
∫ b ( ) ∫ bπ 1

(1 + cos (πx)) dx = 
b − a 

+ 
sin (πb) − sin (πa)2 cos x dx = 

2 2 2 2πa a 

Thus 
∫ x+t 

G (s) ds = t + 
sin (π (x + t)) − sin (π (x − t)) 

= t + 
1 

cos (πx) sin (πt)
2π πx−t 

∫ 1 

G (s) ds =
1 − (x − t) sin (π (x − t))


2 
− 

2π
x−t

∫ x+t
 1 + x + t sin (π (x + t)) 

G (s) ds = + 
2 2π

−1 
∫ 1 

G (s) ds = 1 
−1 

Thus 
 

t 1 
 + sin (πt) cos (πx) , (x, t) ∈ R1 
 2 2π 
 
 1−(x−t) sin(π(x−t)) 
 
 − , (x, t) ∈ R2 
 4 4π 

u (x, t) = 1+x+t + sin(π(x+t)) , (x, t) ∈ R3 (42) 
4 4π 

 
 
 
 1 , (x, t) ∈ R4 
 2 
 
 0 (x, t) ∈ R5, R6 

Step 4. We consider early, intermediate and later times, t = 1/2, 1, 2. At t = 1/2, 

the regions Rn are given by (38), (39) and (42) becomes 

 
 1 + cos πx , 1 1 
 4 2π 2 x ≤

2 
( )  ( ) 

− ≤
1  1 3 cos πx 1 3 

= 4 
(

2 − x 
) 

+ 
4π 

, 
2 ≤ x ≤

2u x, 
2  1 3 + x + cos πx , 3 1 

 4 2 4π 2 2 
 − ≤ x ≤ −
 30 x

2
| | ≥
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Figure 2: The profiles of the displacement u(x, t) for the times t = 0, 1/2, 1, 2. 

At t = 1, the regions Rn are given by (40) and (42) becomes 

 
 

2−
4 
x sin(

4π
πx) 0 ≤ x ≤ 2+ , 

u (x, 1) = 
 

2+
4 
x − sin(

4π
πx) −2 ≤ x ≤ 0 

 

, 
 

0 x| | ≥ 2 

At t = 2, the regions Rn are given by (41) and (42) becomes 

 
 

3−
4 
x sin(

4π
πx) 1 ≤ x ≤ 3

 , 
 

−
sin(πx)+ , 

u (x, 2) = 
 3+

4 
x 

1
4π 

−3 ≤ x ≤ −1 

 , 
 2 x ≤ 1 
 −1 ≤
 

0 x| | ≥ 3 

In Figure 2, the profiles of the displacement u(x, t) are plotted for the times t = 

0, 1/2, 1, 2. 

6 Waves on a finite string 

[Oct 24, 2006] 

Ref: Myint-U & Debnath §4.4 – 4.6, Guenther & Lee §4.5 

We now consider D’Alembert’s solution for a finite string. The dimensionless 
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( ) 

problem with homogeneous Type I BCs (ends of string fixed) is 

utt = uxx 

u (0, t) = 0 = u (1, t) (43) 

u (x, 0) = f (x) 

ut (x, 0) = g (x) 

We found that this has solution 

∞ ∞ 

u (x, t) = un (x, t) = (αn cos (nπt) + βn sin (nπt)) sin (nπx) 
n=1 n=1 

where 
∫ 1 

αn = 2 f (x) sin (nπx) dx 
0 
∫ 12 

βn = 
nπ 0 

g (x) sin (nπx) dx 

We wrote, equivalently, that 

u (x, t) = P (x − t) +Q (x + t) 

where 

∞

1 
P (x − t) = (αn sin (nπ (x − t)) − βn cos (nπ (x − t))) 

2 
n=1 
∞

1 
Q (x + t) = (αn sin (nπ (x + t)) + βn cos (nπ (x + t))) 

2 
n=1 

6.1 Zero initial velocity 

The simplest ICs involve the case of zero initial velocity ut (x, 0) = 0 and a specified 

initial displacement u (x, 0) = f (x). In this case, βn = 0 for all n and 

∞ 

u (x, t) = αn cos (nπt) sin (nπx) = P (x − t) +Q (x + t) 
n=1 

where 
∞

1 1 
P (s) = Q (s) = αn sin nπs = f̂ (s) (44) 

2 2 
n=1 

where f̂(x) is the odd 2-periodic extension (Sine series) of f (x). We can thus write 

1 
u (x, t) = P (x − t) +Q (x + t) = f̂ (x − t) + f̂ (x + t) . (45) 

2 
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This looks like D’Alembert’s solution for the infinite string - but f̂  replaces f (x) ­

so we’ll see that some properties of the solution are different. 

To see directly that (45) satisfies the BCs, note that since f̂ is odd, f̂ (−t) = −f̂ (t), 

and since f̂ is 2-periodic and odd, 

f̂ (1 − t) = f̂ (−1 − t) = −f̂ (1 + t) 

Thus, 
1 

u (0, t) = f̂ (−t) + f̂ (t) = 0 
2 

1 
u (1, t) = f̂ (1 − t) + f̂ (1 + t) = 0 

2 
Therefore, (45) satisfies the Type I BCs (fixed ends). One can also check directly 

that (45) satisfies the ICs and PDE. 

To summarize, we have written the displacement of the string in terms of the odd 

2-periodic extension of the initial condition f (x). Eq. (45) is the solution for the finite 

string problem (43) with Type I BCs (fixed ends), zero initial velocity ut (x, 0) = 0 

and initial displacement u (x, 0) = f (x). 

To draw the solution, note that x only goes from 0 to 1, but time t ∈ [0, ∞). Thus 

x + t ∈ [0, ∞) and x − t ∈ [0, −∞). We use the 2-periodic and odd properties of f̂ to 

see what u (x, t) looks like for 0 < x < 1. 

Example. Suppose f (x) is a thin pulse symmetric about x = 1/2 and with a 

maximum at x = 1/2. The initial pulse breaks into forward and backward waves, 

each propagating with speed 1 in opposite directions. The peak of the forward wave 

(at x = 1/2) first reaches the end of the string x = 1 when 

1 1 
1 − t =

2 
= ⇒ t =

2 

At the same time, the peak of the backward wave reaches the end x = 0. Then what 

happens? On the first half of the string 0 ≤ x ≤ 1/2 and times 1/2 ≤ t ≤ 1, 

−1 ≤ x − t ≤ 0 

and thus 

f̂ (x − t) = −f̂ (t − x) = −f (t − x) 

Recall that f (x) is the shape of the original pulse, so that on the first half of the 

string we have the negative of the forward wave. In other words, the forward wave 

went off the end x = 1 and reappeared at x = 0, UPSIDE DOWN (i.e. with negative 

sign)! On the second half of the string 1/2 ≤ x ≤ 1 and times 1/2 ≤ t ≤ 1, 

1 ≤ x + t ≤ 2 
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and thus 

f̂ (x + t) = −f̂ (x + t − 1) = −f (x + t − 1) 

Thus the backward wave went off the end x = 0 at t = 1/2 and reappeared at the 

other end x = 1 (also at t = 1/2) and upside down (negative sign). At t = 1, the 

waves meet in the center, 

1 1 
u (x, 1) = f̂ (x − 1) + f̂ (x + 1) = −f̂ (x) − f̂ (x) = −f̂ (x) = −f (x)

2 2 

and the displacement is the upside-down version of the initial displacement. The 

process continues in this manner. The characteristics x ± t crisscross each other in 

the xt-plane. We can summarize the behavior using the following table: 

time x range x − t 

range 

x + t 

range 

left half string right half string 

0 ≤ t ≤ 1/2 [0, 1/2] [0, 1] bkwd wave 

[1/2, 1] [0, 1] fwd wave 

1/2 ≤ t ≤ 1 [0, 1/2] [−1, 0] 
fwd wave, 

upside down 

[1/2, 1] [1, 2] 
bkwd wave, 

upside down 
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