18.305 Exam 2,

December 6, 04. Closed Book.

1. Find, for A >> 1, the leading term for each of the following integrals:
a. ji e dy. (15 points.)
b. j:em("““z)dx. (15 points.)

C. jio eltsinhxdy  (‘bonus 20 points.)

2. Consider the differential equation

ey’ — 3(tanx)y’ +y = 0.

Solve this equation with the following boundary conditions:

a.y(1/2) = 2,y(1) = 1. Find the approximate solution for 1/2 < x < 1.(15 points.)

b.y(0) = 0,y(1) = 1. Find the approximate solution for 0 < x < 1. (15 points.)

c.y(-1) = 1,y(1) = 0.Find the approximate solution for -1 < x < 1. (10 points.)

Indicate the location of boundary layer or layers and give the order of magnitude of the width for
each of them.

3. Find, with the two-scale method, the lowest-order approximate solution of
y+(1+e€ )72 )y =0,

satisfying

y(0) =0,y (0) = 1.

For what values of t is this approximate solution good? (30 points)

Formulae which may be useful:

[* eXax = ym,

J'ioeixzdx _ ﬁeinM,

coshz = (e? +e7%)/2, sinhz = (e? —e?)/2,
sinh(x + iy) = sinhxcosy + icoshxsiny.

Also, the solution for
ey’ +axy' + By =0

is

y = | aD, (T 3 +bD,(— [T 0 |,
where

v - B sign(e) +1

| o | 2



Solutions

la. Let

v(x) = x* +x2.

The minimum of v(x) inside the interval [1,2] is at the lower endpoint xo = 1. We have
v(l) =2,Vv'(1) = 6.

Thus, near x = 1,

V(X) ~ 2+ 6(x—-1).

Therefore,

2 —2A
1(2) = e [ g0y ~ &

64 -

1b. Let

u(x) = x* +x2.

The origin is the only point of stationary phase. Near the origin,
u(x) = x2.

Thus we have

|(l) ~ J.ioei/lxzdx _ ‘/%einm.

1c. Since the integrand has no finite endpoints nor points of stationary phase, the dominant
contributions to this integral come from point or points in the complex plane. Since the integrand is
of the order of unity, we expect that the integral vanishes exponentially as 4 — .

As the integrand has no singularities, the dominant contributions come from one or more saddle
points in the complex plane. Let

f(z) = sinhz.

The saddle points are the zeroes of

f'(z) = coshz.

Thus a saddle point z, satisfies

e +e% =0,

which can be writeen as

g2 = -1,

Therefore,

Zo = +iml2,£3im/2,+ « « £2N+ D)7/2 « « -.

There are an infinite number of saddle points.

To see which one or ones contribute, we evaluate the integrand at each of the saddle points. We
have

sinh(x + Iy) = sinhxcosy + icoshxsiny.

Thus

sinh(iinzr‘z—+1) = +i(=1)".

The integrand is exponentially large at
Zo = —inl2,3inl2,-5in/2, Tinl2 « « -,



which are eliminated as points of contribution.

To eliminate the other saddle points, we look to deform the contour of integration originally on
the entire real axis. The goal is to make the deformed contour pass through one or more of the saddle
points, with the magnitude of the integrand largest at the saddle points.

In order to jusify the deformation of the contour of integration, we must make sure that the
integrand vanishes at the added contour at infinity. Since

| ei/’Lsinh(x+iy) |: e—/’Lcoshxsiny,

the integrand vanishes as x — +oo provided that siny > 0. Therefore, we may move the contour
up to the horizontal line y = n/2, ( but not to the horizontal line y = —37/2, for example.)

On the liney = x/2,

sinhz =sinh(x + iz/2) = icoshx.

Hence we have

I(2) = |~ e-heoshxdy,

The function coshx is smallest at Xxo = O ( note that this is the saddle point zo = iz/2). Thus the
integrand is sharply peaked around this point. Applying the Laplace method yields

I(2) = [* e ?@ni)dy — e /27” ,

2a. Since a(x) = —3tanx < 0, 1/2 < x < 1, the rapidly varying solution is increasing. There is a
boundary layer of width € near the upper endpoint x = 1.
We have

o

Yout(X) = eIm = 2(sinx/sin )3,

which satisfies the boundary condition y(1/2) = 2. The solution yout(X) is a good approximation
everywhere outside of the boundary layer near x = 1.

Near the upper endpoint x = 1, we have

€yin — 3(tan1)y;j, = 0.

Thus

Yin() = [1 = You(1)]e G 4 yo(1).

From you:(X) given above, we get

yOut(l) — 24/3(005 %)1/3_

2b. Since a(x) = —3tanx < 0, 0 < x < 1, the rapidly varying solution is increasing with x.
There is a boundary layer of width € near the upper endpoint x = 1.

Since a(0) = 0, there is a boundary layer of width /e near x = 0.

Near x = 0, we have

y@(x) = e3%(4e) [ADl/B(\/;X) + BDy3(— Ex)].

The rapidly varying solution is practically zero at x = 0, being appreciable only near x = 1. This
rapidly varying solution joins with the second term for y®(x) given above. Thus we have

B=0.

The boundary condition

y(0)=0=A=0.

Thus the solution inside the boundary layer near x = 0 is zero.

Matching yout(X) with this solution, we find that

Yout(X) = 0.



Near x = 1, we have

3tan1(1-x)
y(x) =e <,
which satisfies the boundary condition y(1) = 1. This solution is exponentially small outside of
the boundary layer near x = 1. Hence it approximate the solution well everywhere in the interval
0<x<1

2c. As we know, the solution of an interior boundary layer with a negative « is generally a
U-shape curve, being very small everywhere except in regions of widths € near the endpoints.

In the present problem, the boundary condition at the upper endpoint is y(1) = 0. Thus the
solution is ;stml(all I) everywhere except near the lower endpoint. We get

y =@~ €

which satisfies the boundary condition at x = —1 exactly, and the boundary condition at x = 1 up
to an exponentially small amount.

3. Let
Y(t) = yo(tyf) + Eyl(t, T) teee
where
T = €t.
We have,
0? 2 02
(at2 +1+2€6t6 +€ —2)(yo+ey1+---)
+e(-& 0 y0+eaiyo+eaaty1+ «)2(Yo+eyr+-+2) =0.
The |n|t|al conditions are
¥0(0,0) = ¥1(0,0) =+ =0, Lyo [tro =1, Ly Jero =—Lyo |0 et

It is straightforward to find that
Yo(t,7) = A(r)e" + A*(r)e™.
The initial condition yo(0,0) = 0 give

A(0) = -A*(0).

And the initial condition —yo |t—r—0 = 1gives
iIA(0) —iA*(0) = 1.

Thus we get

A(0) = —i/2.

The equation satisfied by y; |s

(8t2 +1)Y1+2£a YO+( YO) Yo = 0.
Setting the sum of secular terms in this equation to zero, we get
2iA" + A’A* = 0.

Let

A = e"R,

We have

2i(R'+i0'R) +R® = 0.

Setting the imaginary part of the equation above to zero, we get

R(r) = 1/2,

a constant, where the initial condition has been taken into account. Setting the real part of the



equaton above to zero, we get

0 = 1/8.
Thus
0 = —nl2 + /8.
Weget i

. eIT
A(r) = - 5
Thus

yo(t) = sin(1 + %)t.
This approximate solution is good fort = O(e™?).

Comments: The two-scale method yields an approximate solution good up to t = O(e™!). We
shall show that the method of renormalized perturbation yields an approximate solution good for all
t.

Let the angular frequency of the system be ®, which we express as

w’(l+aje+az’+--+) =1.

The coefficients a1, a; - - - will be chosen to eliminate the secular terms. The equation can be
written as

. .2

y +0%y = -y y—w?(aie +a?+--)y.

The last term in the differential equation above is the counter term. We put

y(®) = Yyo(t) + eya(t) +- - -

and the differential equation for y becomes

2 . .

({5 +ODWo eyt o) = e +e Yy +or (ot eyi+ers)
—w?(are +aze? ++ - ) (Yo +€y1+ ).

The initial conditions are

¥0(0) =y1(0) =-+-=0, y,(0)=1, vy, (0)=0, etc.
It is straightforward to find that
iot —iot
Yo(t) = i €256
Note that the coefficient of 't and that of e ! in the expression above are both purely
imaginary.

The equation for y4(t) is
d? 2 2 2

(G +@W1 =~ Yo Yo— @ awyo.

We shall show that all secular terms of this equation for y; can be eliminated by a choice of a;.

We have _

yo (t) _ elwt _Ee—lwt .

Note that the coefficient of e't and that of et of y, (t) are real. Thus y§ is a linear
superposition of e™! terms with real coefficients. Similarly, all e™* coefficients of y, yo are
imaginary.

The differential equation for y; is

(Oltz +wo)yr =i o _ + oagiE——E—.
Setting the sum of the coefficients of e'“* in the equation above to zero. we get
a, = — 12 .

do

We see that the sum of the et coefficients also vanishes with this choice of a;.
That a single choice of a; eliminates two kinds of secular terms is due to the fact that a;is real.



With a; real, the right-side of the differential equation above is real. This ensures that the sum of the
coefficients of e terms is equal to the complex conjugate of that of the e'** terms. Consequently,
the sum of the e~'* coefficients vanishes if that of the e'*! coefficients does.

With this value of a;, we get
€

=1+ 5 + oo,
and
sin(1+%)t
Yo(t) = ——>—,
1+§

which, in the lowest-order of € and with t as large as €1, agrees with the result obtained earlier
with the two-scale method.
The e'™t coefficients of y;(t) are imaginary. To see this, we solve the differential equation
satisfied by y1(t) and get
. . Siwt =it
t) = Belot 4 Breiet 1 8= =€ "7
yi(® 640’

_ The initial condition of y;(0) = 0 leads to B being purely imaginary. From the initial condition
y; (0) = 0, we find that the value of B is 3i/(64w?). Thus
. 3eia)t _ 3e—iwt _ e3iwt + e—3ia)t
yu(®) =1 3 :
64w

We note that all coefficients of the e™t terms in the expression above are imaginary. This, in
turn, enables us to show that the secular terms in the differential equation for y,(t) can be eliminated
by a choice of a,.

Instead of showing this, we shall, instead, show by induction that the secular terms in the
differential equation for y,,1 can be eliminated by the counter terms, wheren = 2,3 « « «.

Lety(t),l = 0,1 .- -n, be asuperposition of e™* terms with imaginary coefficients. Then the
eimet coefficients of y ((t), | = 0,1 - - - n are real. With the same arguments as presented before, we
may show that it is possible to eliminate both the e'! secular terms and the et secular terms in the
differential equation for yn.1(t) with a single choice of a,. Also, since yn,1(0) = 0, the g™t
coefficients of y,.1(t) are imaginary. Thus we have proven by induction that it is possible to
eliminate all secular terms with the counter terms.



