
18.305 Exam 2, 
December 6, 04. Closed Book. 

1. Find, for R ;; 1, the leading term for each of the following integrals: 
e?RΩx4+xa. X2 2ædx. Ω15 points.æ 

1 

eiRΩx4+xb. XK 2ædx. Ω15 points.æ 
?K 

eiR sinh xdx.c. XK 
Ω bonus 20 points.æ 

?K 

Ky
2. Consider the differential equation


rr ? 3Ωtan xæy r + y : 0.

Solve this equation with the following boundary conditions:

a. yΩ1/2æ : 2, yΩ1æ : 1. Find the approximate solution for 1/2 9 x 9 1.Ω15 points.æ 
b. yΩ0æ : 0, yΩ1æ : 1. Find the approximate solution for 0 9 x 9 1. Ω15 points.) 
c. yΩ?1æ : 1, yΩ1æ : 0.Find the approximate solution for ?1 9 x 9 1. Ω10 points.æ 
Indicate the location of boundary layer or layers and give the order of magnitude of the width for 

each of them. 

3. Find, with the two-scale method, the lowest-order approximate solution of 
66 6 2 
y +Ω1 + K y æy : 0,

satisfying


6 
yΩ0æ : 0, y Ω0æ : 1.

For what values of t is this approximate solution good? Ω30 points)

Formulae which may be useful:


e?x2XK 
dx : Z ,

?K 

eix2 
Z eiZ/4,XK 

dx : 
?K 

cosh z : Ωez + e?zæ/2, sinh z : Ωez ? e?zæ/2,

sinhΩx + iyæ : sinh x cos y + i cosh x sin y.


Also, the solution for 
Ky rr + Fxy r + Gy : 0 

y : e?Fx2/Ω4Kæ 
TΩ 

PFP 
K xæ + TΩ? PFP 

K xæ , 

is 

aD bD

where 

T : 
G ? signΩ

2 
Fæ + 1 .


P F P




Solutions 

1a. Let

vΩxæ : x4 + x2.

The minimum of vΩxæ inside the interval ø1, 2¿ is at the lower endpoint x0 : 1. We have

vΩ1æ : 2, v rΩ1æ : 6.

Thus, near x : 1,

vΩxæ p 2 + 6Ωx ? 1æ.

Therefore,


IΩRæ p e?2R X2 
e?6RΩx?1ædx p e?2R 

. 
1 6R 

1b. Let

uΩxæ : x4 + x2.

The origin is the only point of stationary phase. Near the origin,

uΩxæ p x2.

Thus we have


eiRx2 
eZ iZ/4IΩRæ p XK 

dx : R 
. 

?K 

1c. Since the integrand has no finite endpoints nor points of stationary phase, the dominant 
contributions to this integral come from point or points in the complex plane. Since the integrand is 
of the order of unity, we expect that the integral vanishes exponentially as R î K. 

As the integrand has no singularities, the dominant contributions come from one or more saddle 
points in the complex plane. Let 

fΩzæ : sinh z. 
The saddle points are the zeroes of 
f rΩzæ : cosh z. 
Thus a saddle point z0 satisfies 
ez0 + e?z0 : 0, 
which can be writeen as 
e2z0 

z

: ?1.

Therefore,


0 : çiZ/2, ç3iZ/2, 6 6 6 çΩ2n + 1æZ/2 6 6 6.

There are an infinite number of saddle points.

To see which one or ones contribute, we evaluate the integrand at each of the saddle points. We


have 
sinhΩx + iyæ : sinh x cos y + i cosh x sin y. 
Thus 
sinhΩçiZ 2n + 1 æ : çiΩ?1æn . 

z

2

The integrand is exponentially large at


0 : ?iZ/2, 3iZ/2, ?5iZ/2, 7iZ/2 6 6 6,




which are eliminated as points of contribution. 
To eliminate the other saddle points, we look to deform the contour of integration originally on 

the entire real axis. The goal is to make the deformed contour pass through one or more of the saddle 
points, with the magnitude of the integrand largest at the saddle points. 

In order to jusify the deformation of the contour of integration, we must make sure that the 
integrand vanishes at the added contour at infinity. Since 

P eiR sinhΩx+iyæ P: e?R cosh x sin y, 
the integrand vanishes as x î çK provided that sin y ; 0. Therefore, we may move the contour 

up to the horizontal line y : Z/2, ( but not to the horizontal line y : ?3Z/2, for example.) 
On the line y : Z/2, 
sinh z : sinhΩx + iZ/2æ : i cosh x. 
Hence we have 

e?R cosh xdx.IΩRæ : XK 

?K 
The function cosh x is smallest at x0 : 0 ( note that this is the saddle point z0 : iZ/2æ. Thus the 

integrand is sharply peaked around this point. Applying the Laplace method yields 
2ZIΩRæ p XK 

e?RΩ1+x2/2ædx : e?R 
?K R 

. 

2a. Since aΩxæ : ?3 tan x 9 0 , 1/2 9 x 9 1, the rapidly varying solution is increasing. There is a 
boundary layer of width K near the upper endpoint x : 1. 

We have 
dxr


3 tan xr
youtΩxæ : e 
X 

: 2Ωsin x/ sin 1 æ1/3,2 
which satisfies the boundary condition yΩ1/2æ : 2. The solution youtΩxæ is a good approximation 

everywhere outside of the boundary layer near x : 1. 
Near the upper endpoint x : 1, we have 

rrr ? 3Ωtan 1æyin : 0. Kyin 

Thus 
yinΩxæ : ø1 ? youtΩ1æ¿e?Ω3 tan 1æ 1?x 

K + youtΩ1æ.

From youtΩxæ given above, we get


/ 1 æ1/3
youtΩ1æ : 24 3Ωcos 2 . 

2b. Since aΩxæ : ?3 tan x í 0 , 0 9 x 9 1, the rapidly varying solution is increasing with x. 

y
x :

Ω4Kæ 
1

Near 0, we have 
ADΩaæΩxæ : e3x2/ 3 

K xæ + BD1/3Ω? 

K x :
aΩ0æ : K x :

3 
K xæ . 

There is a boundary layer of width near the upper endpoint 1.
Since 0, there is a boundary layer of width near 0.

The rapidly varying solution is practically zero at x : 0, being appreciable only near x : 1. This 
/3Ω 

rapidly varying solution joins with the second term for yΩaæΩxæ given above. Thus we have 
B : 0.

The boundary condition

yΩ0æ : 0 Ã A : 0.

Thus the solution inside the boundary layer near x : 0 is zero.

Matching youtΩxæ with this solution, we find that

youtΩxæ : 0.




Near x : 1, we have 
yΩxæ : e? 3 tan 1Ω1?xæ 

K , 
which satisfies the boundary condition yΩ1æ : 1. This solution is exponentially small outside of 

the boundary layer near x : 1. Hence it approximate the solution well everywhere in the interval 
0 9 x 9 1. 

2c. As we know, the solution of an interior boundary layer with a negative F is generally a 
U-shape curve, being very small everywhere except in regions of widths K near the endpoints. 

In the present problem, the boundary condition at the upper endpoint is yΩ1æ : 0. Thus the 
solution is small everywhere except near the lower endpoint. We get 

y : e? 3 tan 1Ω1+xæ 
K 

which satisfies the boundary condition at x : ?1 exactly, and the boundary condition at x : 1 up 
to an exponentially small amount. 

3. Let 
yΩtæ : y0Ωt, ̂ æ + Ky1Ωt, ̂ æ +6 6 6, 
where 
^ : Kt. 
We have, 

Ω /
2 

/t2 + 1 + 2K /
2 

/t/^ 
+ K2 /2 

/^2 æΩy0 + Ky1 + 6 6 6æ 

+KΩ /
/t 

y0 + K /
/^ 

y0 + K /
/t 

y1 + 6 6 6æ2Ωy0 + Ky1 + 6 6 6æ 

The initial conditions are 

: 0. 

y0Ω0, 0æ : y1Ω0, 0æ : 6 6 6 : 0, 

It is straightforward to find that 

/
/t 

y0 P t:^:0 : 1, /
/t 

y1 P t:^:0 : ? /
/^ 

y0 P t:^:0 , etc. 

y0Ωt, ̂ æ : AΩ^æeit + ADΩ^æe?it . 
The initial condition y0Ω0, 0æ : 0 give 
AΩ0æ : ?ADΩ0æ. 
And the initial condition 

iAΩ0æ ? iADΩ0æ : 1. 

/
/t 

y0 P t:^:0 : 1 gives 

Thus we get 
AΩ0æ : ?i/2. 
The equation satisfied by y1 is 

Ω /
2 

/t2 + 1æy1 + 2 /
2 

/t/^ 
y0 + Ω /

/t 
y0æ2y0 : 0. 

Setting the sum of secular terms in this equation to zero, we get 
2iA r + A2AD : 0. 
Let 
A : eiOR. 
We have

2iΩR r + iOrRæ + R3 : 0.

Setting the imaginary part of the equation above to zero, we get

RΩ^æ : 1/2,

a constant, where the initial condition has been taken into account. Setting the real part of the




equaton above to zero, we get 
Or : 1/8. 
Thus 
O : ?Z/2 + ^/8. 
We get 

/8 
AΩ^æ : ?i e

i^

2
. 

Thus

y0Ωtæ : sinΩ1 +

8 
K æt.


This approximate solution is good for t : OΩK?1æ. 

Comments: The two-scale method yields an approximate solution good up to t : OΩK?1æ. We 
shall show that the method of renormalized perturbation yields an approximate solution good for all 
t. 

Let the angular frequency of the system be c, which we express as 
c2Ω1 + a1K + a2K2 + 6 6 6æ : 1. 
The coefficients a1, a2 6 6 6 will be chosen to eliminate the secular terms. The equation can be 

written as 
66 
y +c2y : ?K y 

6 2 
y ? c2Ωa1K + a2K2 + 6 6 6æy. 

The last term in the differential equation above is the counter term. We put 
yΩtæ : y0Ωtæ + Ky1Ωtæ +6 6 6

and the differential equation for y becomes


6
Ω d2 

+ c2æΩy0 + Ky1 + 6 6 6æ : ?KΩy
6 

0 + K y1 + 6 6 6æ2Ωy0 + Ky1 + 6 6 6æ 
dt2


?c2Ωa1K + a2K2 + 6 6 6æΩy0 + Ky1 + 6 6 6æ.

The initial conditions are 

6 6 
y0Ω0æ : y1Ω0æ : 6 6 6 : 0, y0 Ω0æ : 1, y1 Ω0æ : 0, etc.

It is straightforward to find that


y0Ωtæ : i e
ict ? e?ict 

2c 
. 

Note that the coefficient of eict and that of e?ict in the expression above are both purely 
imaginary. 

The equation for y1Ωtæ is 
6 2

Ω d2 
+ c2æy1 : ? y0 y0 ? c2a1y0. 

dt2 

We shall show that all secular terms of this equation for y1 can be eliminated by a choice of a1. 
We have 

y
6

Ωtæ : ? e
ict + e?ict


0 2
.


6 2

Note that the coefficient of eict and that of e?ict of y

6 
0 Ωtæ are real. Thus y0 is a linear


6 2

superposition of eimct terms with real coefficients. Similarly, all eimct coefficients of y0 y0 are 
imaginary. 

The differential equation for y1 is 

Ω d2 
+ c2æy1 : i e3ict ? e?3ict + eict ? e?ict 

+ ca1i e
ict ? 

2 
e?ict 

. 
dt2 8c


Setting the sum of the coefficients of eict in the equation above to zero. we get

1
a1 : ? 

4c2 . 

We see that the sum of the e?ict coefficients also vanishes with this choice of a1.


That a single choice of a1 eliminates two kinds of secular terms is due to the fact that a1is real.




8 

6 

With a1 real, the right-side of the differential equation above is real. This ensures that the sum of the 
coefficients of e?ict terms is equal to the complex conjugate of that of the eict terms. Consequently, 
the sum of the e?ict coefficients vanishes if that of the eict coefficients does. 

With this value of a1, we get 
c : 1 + K + 6 6 6, 

and

sinΩ1 + K æt


y0Ωtæ : 
1 + K 

8 , 
8 

which, in the lowest-order of K and with t as large as K?1, agrees with the result obtained earlier 
with the two-scale method. 

The eimct coefficients of y1Ωtæ are imaginary. To see this, we solve the differential equation 
satisfied by y1Ωtæ and get 

y1Ωtæ : Beict + BDe?ict + e
3ict ? e?3ict 

. 

y

64c3i 
The initial condition of y1Ω0æ : 0 leads to B being purely imaginary. From the initial condition 

1 Ω0æ : 0, we find that the value of B is 3i/Ω64c3æ. Thus 

y1Ωtæ : i 3eict ? 3e?ict ? e3ict + e?3ict 

64c3 . 

We note that all coefficients of the eimct terms in the expression above are imaginary. This, in 
turn, enables us to show that the secular terms in the differential equation for y2Ωtæ can be eliminated 
by a choice of a2. 

Instead of showing this, we shall, instead, show by induction that the secular terms in the 
differential equation for yn+1 can be eliminated by the counter terms, where n : 2, 3 6 6 6. 

e
Let ylΩtæ, l : 0, 1 6 6 6 n, be a superposition of eimct terms with imaginary coefficients. Then the 

imct coefficients of y 
6 

lΩtæ, l : 0, 1 6 6 6 n are real. With the same arguments as presented before, we 
may show that it is possible to eliminate both the eict secular terms and the e?ict secular terms in the 
differential equation for yn+1Ωtæ with a single choice of an. Also, since yn+1Ω0æ : 0, the eimct 

coefficients of yn+1Ωtæ are imaginary. Thus we have proven by induction that it is possible to 
eliminate all secular terms with the counter terms. 


