
Boundary Layers and Singular Perturbation 

Lecture 18 
Interior Turning Points 

In this lecture we’ll examine some examples in which there is a turning point inside the interval 
where (9.13) holds. This is to say that the turning point is an interior point. 

This is a good time to make a subtle elaboration on how to continue a solution through a turning 
points. We shall put, without loss of generality, the turning point at the origin. 

Let’s first consider the case in which F ; 0. The rapidly varying solution is increasing for x 9 0 
and is decreasing for x ; 0. Let us start with the rapidly varying solution (9.24), at the lower 
endpoint x : ?1 and continue this solution to the right. Before we reach the origin, indeed at a 

join it with y2Ωxæ which, by the second asymptotic form of (9.52), is 
Kdistance away from the origin, (9.24) fails to be a good approximation. To continue this solution 

through the origin, we must 
x K 

x x ô 
rapidly varying when is negative and is with a magnitude much larger than . As we continue this 
solution to positive values of , it turns into the slowly varying solution when K 

F ; 
, as can be 

verified with the use of the first asymptotic formula of (9.52). We mention that, for 0, it is not 
meaningful to start with the slowly varying solution at x : ?1 and continue it to the right. To see 
this, consider the solution near x : ?1 which is a sum of a slowly varying solution and a rapidly 
varying solution. Let the latter being very small compared to the former at x : ?1. As we continue 
this solution to the right, the rapidly solution grows exponentially and may become comparable to or 
even larger than the slowly varying solution. This says that if we start at x : ?1, it is difficult to 
distinguish a slowly varying solution with the sum of a slowly varying solution and a rapidly varying 
solution. 

Similarly, in order to obtain the second independent solution of the differential equation, we start 
with the rapidly varying solution at the upper endpoint x : 1 and continue it to the left. Inside the 
boundary layer, it is equal to y1Ωxæ, as we can seen from the first asymptotic formula of (9.51). As 
we continue this solution to the region x 9 0, it turns into the slowly varying solution, as we can see 
from the second asymptotic formula of (9.51). 

To repeat, if F is positive, the rapidly varying solution decreases exponentially as one leaves the 
origin in either direction. Therefore, if a rapidly varying solution and a slowly varying solution are of 
the same order of magnitude at x : 0, then the former is much smaller than the latter as one leaves 
the origin. We shall call the former the small solution, and the latter the large solution. It is 
meaningful to take a small solution at one side of the turning point and continue it across the turning 
point. The small solution turns into the large solution at the other side of the turning point. But it is 
not meaningful to start with the large solution and continue it across the turning point. 

If F 9 0, the rapidly varying solution is increasing in the region x ; 0 and decreasing in the 
region x 9 0. Thus the rapidly varying solution is the large solution and the slowly varying solution 
is the small solution. As before, we must start with the small solution and continue it across the 
turning. Thus we start with the slowly varying solution at an endpoint and continue it across the 
origin. This solution turns into the rapidly varying solution as one crosses the origin. 

We shall give a couple of examples to illustrate how to use this concept of small solution and 
large solution to solve a boundary layer problem with an interior turing point. It is also possible to 
use this concept to solve boundary layer problems with two or more turning points. (See homework 
problem 12.) 

Ky

Problem for the Reader: 
Solve 

rr + 2Ωtan xæy r ? y : 0, ? 1 9 x 9 1, 

with 

yΩ?1æ : 1, and yΩ1æ : 3. 

Answer 
We have 
aΩxæ ; 0, x ; 0; aΩxæ 9 0, x 9 0. 
We see that the rapidly varying solution in the region x ; 0 is decreasing with x. This means that 

there is no boundary layer at the upper endpoint x : 1. Also, the rapidly varying solution in the 
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region x 9 0 is increasing with x. Thus there is no boundary layer at the lower endpoint x : ?1. The 

x : x : 
K . 

boundary layer is at the turning point 0. The width of the boundary layer near 0 is of the 
order of 

Note that, on either side of the origin, the rapidly varying solution is always the small solution, 
and the slowly varying solution is always the large solution. 

The slowly varying solution is given by 
r2Ωtan xæys ? ys p 0, 

or 
ysΩxæ : c x . 

x : ?
sin 

Let us start with the small solution, which is the rapidly varying solution, at 1. After we 
continue this solution to the region 0 9 x 9 1, it becomes the slowly varying solution given by 

Ωaæ yout : 3 sin x 
sin 1 

, 

where the boundary condition yΩ1æ : 3 has been taken into account. Since this silution is OΩ1æ in the 
region x ; 0, it is exponentially small in the region x 9 0. 

When x is small and positive, we have 

y x 
out sin 1 

. ΩaæΩxæ u 3 

/2This solution is a good approximation outside of the boundary layer near the origin of the width K1 . 
ΩaæΩK1/ /Since yout 

2æ is of the order of K1 4, we expect the value of the solution inside the boundary layer to 
/be of the order of K1 4, which is small. 

Next we start with the rapidly varying solution at x : 1 and continue it to the region ?1 9 x 9 0, 
where it becomes the slowly varying solution given by 

Ωbæ yout : ? sin x/ sin 1 . 

When x is small and negative, we have 
Ωbæ yout u ?x/ sin 1 . 

For x ; 0, this solution is exponentially small and can be ignored. 
Let us find the solution

2 
K 

yinΩxæ inside the boundary layer near x : 0. By (9.49) and (9.50), we 
have X : x and 

Ω2Kæ c1D?3
22/ x + c2D?3/ xyinΩxæ : e?x

/2 
K 

2 ? 2 
K . 

As X î K, we have 
/4K?1/4yinΩxæ î c227 x .


Ωaæ
Matching with yout in the region x ; 0, we get 

c2 u 3 1 K1/4. 
27/2 sin 1 

As X î ?K, we have 
/4K?1/4yinΩxæ î c127 ?x . 

Matching with yout 
ΩbæΩxæ, we get 

1 K1/4c1 u 
27/2 sin 1 

. 

Thus 

22/Ω2Kæ 1 K1/4 D?3

4 Xwhen is of the order of unity, as expected. 

x/2 K x + 3D?3/yinΩxæ : e?x

27/2 sin 1 
2 ? 2 

K , 

/which is of the order of K1
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