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Lecture 2 
Complex Analysis 

A Complex Numbers and Complex Variables 
In this chapter we give a short discussion of complex numbers and the theory of a function of a 

complex variable. 
Before we get to complex numbers, let us first say a few words about real numbers. 
All real numbers have meanings in the real world. Ever since the beginning of civilization, 

people have found great use of real positive integers such as 2 and 30, which came up in, as an 
example, the sentence “my neighbor has two pigs, and I have thirty chickens”. The concept of 
negative real integers, say ?5, is a bit more difficult, but found its use when a person owed another 
person five ounces of silver. It was also natural to extend the concept of integers to numbers which 
are not integers. For example, when six persons share equally a melon, the number describing the 
fraction of melon each of them has is not an integer but the rational number 1/6. The need for other 
real numbers was found as mathematicians pondered the length of the circumference of a perfectly 
circular hole with unit radius. This length is a real number which can be expressed neither as an 
integer nor as a ratio of two integers. This real number is denoted as Z, and is called an irrational 
number. Another example of irrational number is e. 

Each of the real numbers, be it integral, rational or irrational, can be geometrically represented 
by a point on an infinite line, and vice versa.. 

When we add, subtract, multiply or divide two real numbers, the outcome is always a real 
numbers. Thus the root of the linear equation 

ax + b : c, 
with a, b and c real numbers, is always a real number. This means that if we restrict ourselves to 

making linear algebraic operations of real numbers, the result that comes out is invariably found as a 
real number. Thus the real numbers form a complete system under linear algebraic operations. 

But as soon as we get to non-linear operations, the system of real numbers becomes inadequate 
by itself. For example, the roots of 

x2 : ?1 
cannot be expressed as a real number, and we must use our imagination denoting a root as i. As 

we all know, the number i is the imaginary number. While we have gotten to be comfortable with the 
number i ever since our high school days, Gauss once remarked that the “ true metaphysics” of i was 
“hard”. 

The number 
F : a + ib, 
where a and b are real numbers, is called a complex number. The numbers a and b are called the 

real part and the imaginary part of F, respectively. While complex numbers do not have direct 
meanings in the real world, we shall see that, as we allow ourselves wander into the never-never land 
of complex numbers, we find powerful ways to deal with real problems. 

The complex variable z is denoted by 

z : x + iy, 

where x and y are real variables and 

i2 : ?1. 

The complex conjugate of z will be denoted as 

zD : x ? iy. 

The variable z can be represented geometrically by the point Ωx, yæ in the Cartesian two-dimensional 
plane. In complex analysis, this two-dimensional plane is called the complex plane. The x axis is 
called the real axis, and the y axis in this plane is called the imaginary axis. Let r and O be the polar 
coordinates, i.e., 

x : r cos O, y : r sin O Ωr ì 0æ, 

where O can be chosen to be between 0 and 2Z. 
In the the polar coordinates, z is
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z : rΩcos O + i sin Oæ. (2.1) 

The Euler’s formula says 

eiO : cos O + i sin O. (2.2) 

Incidentally, (2.2) shows that, when O is real, cos O and sin O are the real part and the imaginary part 
of eiO, respectively. For example, the complex num Some useful special cases of (2.2) are 

eiZ : ?1, 

which wraps up . In particular, 

e2iZ eiZ: 1, : ?1, 

which relate the transcendental numbers e, Z and i. 
By (2.2) we have 

z : reiO . (2.3) 

This is known as the polar form of z. We call r the absolute value of z, which is also expressed as 
P z P, and O the argument of z. 

The argument of z is defined modulo an integral multiple of 2Z, as is obvious geometrically. 
Indeed, the polar form (2.3) can be written as 

z : reiΩO+2nZæ . (2.4) 

The polar form is particularly convenient to use for carrying out the operations of multiplication or 
division of complex numbers. Let 

z1 : r1eiO1 , z2 : r2eiO2 , 

then 

z1z2 : r1r2eiΩO1+O2æ , z1/z2 : Ωr1/r2æeiΩO1?O2æ . 

These operations are more cumbersome to carry out if we express the complex numbers with the 
Cartesian form. 

Needless to say, using the polar form to do multiplication and division of more factors of 
complex numbers is even more laborsaving. In particular, we have 

zn : rneinO : rnΩcos nO + i sin nOæ. 

What about the power function za, where a is a number which is not an integer? We have 
a 
: raeiOaei2nZaza : øreiΩO+2nZæ ¿ . Ωn : 0, ç1, ç2, ̀ æ, 

which shows that za has infinitely many values. Exceptions occur when a is a rational number. 
/

1

Consider for example z1 2. Setting a : 1/2 and z : 1 in the expression above, we get 
1/2 : einZ : 1, n even, 

: ?1, n odd, 

which is the familiar result that the square-root of unity is ç1. More generally, 

zn/m : rn/meinO/mei2Zkn/m , Ωk : 0, 1, 6 6 6, m ? 1æ, 

where n and m are integers with no common factors. 

B Analytic Functions 
A complex-value function fΩzæ is said to be analytic in a region R in the complex z-plane if the 

limit 
=f

lim # 
=zî0 =z 

exists for every point z in R, where 
=f : fΩz + =zæ ? fΩzæ. 
The limit above, if it exists, is called the derivative of fΩzæ. The function fΩzæ is said to be analytic 

at z0 if it has a derivative in a neighborhood of z0. 
While (2.5) resembles the definition of the derivative of a function of a real variable x 

=f
f rΩxæ : lim , 

=xî0 =x 
there is actually a substantive difference between them. The point is that =z has both a real part and 
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an imaginary part, i.e., =z : =x + i=y. Therefore, if fΩzæ is to have a derivative, the limit of (2.5) is 
required to exist for any =x and =y, as long as both of them go to zero. There is no restriction, for 
example, on the ratio of =y/=x, which may take any value. This is a strong condition on the function 
fΩzæ. 

A strong condition has strong consequences. Let 

fΩzæ : uΩx, yæ + ivΩx, yæ, 

where u and v are the real and the imaginary part of fΩzæ. Then the expression in (2.5) is 

lim =u + i=v , (2.6) 
=zî0 =x + i=y 

where 
=u : uΩx + =x, y + =yæ ? uΩx, yæ, 
and similarly for =v. We first consider the limit of (2.6) with =z real, i.e., =z : =x. Then the 

limit of (2.6) is equal to 

lim =u + i=v : ux + ivx, (2.7) 
=xî0 =x y fixed 

where ux, for example, is the partial derivative of u with respect to x. Next we consider the limit 
(2.6) with =z purely imaginary, i.e., =z : i=y. We have 

Ωuy + ivyælim =u + i=v : 
i 

. (2.8) 
=yî0 i=y x fixed 

If fΩzæ has a derivative, the expressions of (2.7) and (2.8) are the same by definition. This requires 
that 

ux : vy, uy : ?vx. (2.9) 

The equations in (2.9) are known as the Cauchy-Riemann equations which the real part and the 
imaginary part of an analytic function must satisfy. 

While we have only required that the limit of (2.5) is the same with =z either real or imaginary, it 
is straightforward to prove that this limit is the same for any complex =z when the Cauchy-Riemann 
equations are obeyed. 

Problem for the Reader: 
Is the function fΩzæ : zzD analytic? 

Answer 
For this function, 

uΩx, yæ : x2 + y2, vΩx, yæ : 0. 

We have 

ux : 2x, uy : 2y, vx : vy : 0. 

Thus the Cauchy-Riemann equations are not satisfied except at the origin, which is a point but not a 
region. Since the derivative of the function exists for no region of z, it is not analytic anywhere. 

Next we give a few examples of functions which are analytic. The power function zn with n an 
integer is analytic. While this may appear obvious to many of you, let us give it a proof. We have, by 
using the binomial expansion, 

Ωz + =zæn ? zn 

: lim nzn?1=z + 6 6 6 ,lim 
=zî0 =z =zî0 =z 

where the terms unexhibited are at least as small as the square of =z. The limit above exists for all 
=z and is equal to nzn?1, the way we remember it from calculus. Thus the derivative of the power 
function zn exists for all values of z, and this function is analytic for all values of z, or an entire 
function of z. 

Since the power function zn is analytic, so is the linear superposition of a finite number of power 
functions. And so is an absolutely convergent sum of power functions. Conversely, a function 
analytic at a point z0 always has a convergent Taylor series expansion around z0 (homework problem 
7). 

C The Cauchy Integral Theorem 
The contour integral 
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I : X fΩzædz 
c 

where c is a contour in the complex plane, is defined to be 

X Ωu + ivæΩdx + idyæ : X Ωudx ? vdyæ + i X Ωudy + vdxæ. # 
c c c 

We note that the two integrals on the right side of (2.12) are line integrals in the two-dimensional 
plane. 

An example of a line integral is the work done by a force. As we know, if A and B are two points 
in the x ? y plane, the work done in moving a particle from A to B along a path c against the force 

F : MΩx, yæ i + NΩx, yæ j 

is equal to the line integral 

X ΩMdx + Ndyæ. 
c 

F V 

F : ?4V, 

We also recall that if is a conservative force, i.e., if there exists a potential such that 

then the work done is independent of the path. To say this more precisely, let the potential V exist in 
a region R in the two-dimensional plane, then 

X ΩMdx + Ndyæ : X ΩMdx + Ndyæ, 
c1 c2 

provided that c1 and c2 are two curves with the same endpoints and both lie inside R. 
If the potential V exists, we have 

P 
0 

P 1r1 

r
2 

Figure 2.1. 

M : ?Vx, N : ?Vy, 

and hence 

My : Nx. (2.13) 

The converse is indeed also true: if (2.13) holds in a region R, then the force is the gradient of a 
potential. 

c

Now for the first line integral in (2.12), M is u and N is ?v. Thus the condition (2.13) for this line 
integral is the second Cauchy-Riemann equations. For the second line integral in (2.12), M is v and N 
is u . Thus the condition (2.13) for this line integral is the first Cauchy-Riemann equations. The 
contour integral I in (2.12) is therefore path independent if fΩzæ is analytic. More precisely, let c1 and 

2 be two curves, both join the lower endpoint z0 to the upper endpoint z1 in the complex z-plane, 
and both lie inside the region R where fΩzæ is analytic. Then we have 

X fΩzædz : X fΩzædz. (2.14) 
c1 c2 

Equation (2.14) tells us that we may deform the contour c1 to the contour c2, where c1 and c2 have 
the same endpoints, provided that fΩzæ is analytic in the region lying between c1 and c2. 
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Figure 2.2. 
The contours c1 and c2 in (2.14) are open contours. We shall extend (2.14) to closed contours. 

Let c and c r be closed contours of the same sense of direction, i.e., either both counterclockwise or 
both clockwise, and that there are no singularities of fΩzæ between c and c r. We choose a point z0on c 
and think of the closed contour c as a contour joining the point z0 to itself. Let us draw a line joining 

rz0 to a point z0 on c r, forming a bridge between c and c r. Then we may think of c r as another contour 
joining z0 to itself. This is because c r can be considered to be the contour which begins at z0, crosses 
the bridge to z0 

r , and follows c r to return to z0 
r , then crosses the bridge in the reverse direction to 

finally come back to z0. As the bridge is crossed twice in opposite directions, the two contour 
integrals associated with the contour of the bridge cancel each other. Therefore, c r can also be 
considered as a closed contour joining z0 to itself, and by (2.14) have 

X fΩzædz : X fΩzædz. (2.15) 
c cr 

Equation (2.15) says that the contour c can be deformed into c r provided that fΩzæ is analytic in the 
region lying between c and c r . 

Let us go from z0 to z1 along contour c1 in Fig. 2-1, then go from z1 back to z0 along ?c2, which 
is c2 in the reverse direction. The contour c : c1 ? c2 is a closed contour. Thus (2.14) can be written 
as 

X fΩzædz : 0 (2.16) 
c 

provided that fΩzæ is analytic in a region R and c is a closed contour c inside R. Equation (2.16) is the 
important Cauchy integral theorem. 

Next we consider the integral 
dz In : X 

c Ωz ? z0æn , 

where c is a closed contour in the counterclockwise direction and n is a positive integer. The 
integrand blows up at z : z0, and is said to have a singularity at z0. More generally, if a single-value 
function fΩzæ is not analytic at point z0, then we say that fΩzæ has a singularity at z0. 

If c does not enclose z0, I vanishes by Cauchy’s integral theorem. 
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Figure 2.3. 
And if c encloses z0, we may deform the contour into the circle CR without crossing any 

singularity of the integrand, where CR is the circle the center of which is z0 and the radius of which is 
R. 

Now if z is on CR, 

|z ? z0|: R, 

and hence 

z ? z0 : eiOR. 

From this polar form of Ωz ? z0æ, we get 

dz : ieiORdO. 

Thus we have 

In : 
Rn

i 
?1 X

2Z 
eiΩ1?næOdO. 

0 

The integral above is easily calculated. Indeed, we have 

eX2Z 
iΩ1?næOdO : 2Z, n : 1, 

0 

: 0, n é 1. 

Thus we conclude that, if z0 is inside the closed counterclockwise contour c, we have 

In : 2Zi, n : 1, 

: 0, n é 1. (2.17) 

From (2.17), we find that if the only singularity fΩzæ has in the region enclosed by the closed coutour 
c is located at z0, and if fΩzæ is approximately 

a?1/Ωz ? z0æ 

as z is near z0, we have 

X fΩzædz : 2Zia?1. (2.26) 
c 

This is known as the Cauchy residue theorem. Eq. (2.26) is actually true as long as fΩzæ has an 
isolated singularity at z0. Ω See the textbook for a more complete discussion.) The coefficient a?1 is 
known to be the residue of fΩzæ at z0, which we shall denote as ResΩz0æ. If the contour is clockwise, 
the integral will be equal to the negative of 2Zi times the residue. 

This formula is one of the most useful formulae in complex analysis. It tells us that the value of 
an integral over a closed contour can be obtained by simply evaluating the residue of its integrand. 

If the contour c encloses more than one singularities of fΩzæ, we replace the right side of (2.26) by 
the sum of residues of fΩzæ at these singularities. 

Before we close this section, let us show how to evaluate efficiently the residue of fΩzæ at z0 

where the function has a pole of the first order, which is called a simple pole. If the singularity of fΩzæ 
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at z0 is a simple pole, 

fΩzæ : z
a
?
?1 
z0 

+ a0 + a1Ωz ? z0æ +6 6 6. 

Thus the residue of fΩzæ at z0 is equal to 

ResΩz0æ : lim Ωz ? z0æfΩzæ. (2.27) 
zîz0 

D Evaluation of Real Integrals 
The Cauchy residue theorem provides us with a tool to evaluate a number of real integrals, the 

integrands of which are functions of a real variable and the integration is over real values of the 
variable. Some of these integrations are difficult to carry out in closed form with the methods 
provided by calculus. We shall show that, by going into the never-never land of the complex plane, 
sometimes we can find the closed forms of these integrals. 

As an example, let us consider the integral 
dx I : XK 

1 + x2 . (2.28) 
?K 

This integral can be evaluated exactly. We have 
KI : tan?1x|?K : Z. 

We shall reproduce this result by using the Cauchy residue theorem. We regard this integral as a 
contour integral over the real axis of the complex plane. But we cannot as yet apply the Cauchy 
residue theorem to it, as the real axis is not a closed contour. Let us think of the real axis as the 
contour from ?R to R along the real axis, in the limit as R approaches infinity. We add to this contour 
the counterclockwise semicircle in the upper half-plane with the origin as the center and R the 
radius, and get a closed contour which we shall call c. As we shall see, the integral over the 
semicircle vanishes in the limit of R î K. Thus the integral of (2.28) is equal to the integral over c. 
Since c is a closed contour we may apply the Cauchy residue theorem to the integral. The only 
singularity of the integrand enclosed by c is z : i. Thus we get 

I : 2ZiResΩiæ : 2Zi 1 : Z,
2i 

which is the correct result. 
To finish the argument let us show that the contribution of the semicircle is zero in the limit 

R î K. If z is a point on the semicircle, 

z : eiOR, 0 í O í Z. 

When R is very large, the integrand 1/Ω1 + z2æ is approximately equal to 1/z2, the magnitude of which 
is 1/R2. We also have 

dz : ieiORdO. (2.29) 

Thus we have 

u XZdz RidOX 
CR 1 + z2 0 R2e2iO 

, 

where CR is the semicircle in the upper-half plane. In the limit R î K, the integral above vanishes. 
We may also close the contour of the integral in (2.28) by adding to it the semicircle in the lower 

half-plane in the clockwise direction. The only singularity enclosed by this contour is the one at 
z : ?i. Thus we have 

I : ?2Zi ResΩ?iæ : ?2Zi 1 : Z,?2i 
which is the same answer. Note that the minus sign above is due to the fact that the closed contour is 
clockwise. 

One of the first things we do in applying the Cauchy residue theorem is to make sure that the 
contour is a closed one. If the contour is not closed, try to close it if possible. The second step is to 
locate the singularities of the integrand enclosed by the contour, and calculate the residues of the 
integrand at each of the singularities. 

Many more examples are given in the textbook.

Homework Problems


1. Prove that the limit of (2.5) is the same for any =z if the Cauchy-Riemann equations are 
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satisfied by the real part and the imaginary part of fΩzæ.


2. Prove that 

2Z : 
5 ? 1

. d. X1 1 x3 
cos 

5 4 0 1 + x2 1 ? x 
. 

Z cosΩZ/8æ
Ans. Z ? 

21/4 
. 

Hint: Let eZi/5 è c + is, then 

Ωc + isæ5 : ?1.


Equate the imaginary parts of the two sides of this equation.

3. Evaluate the following integrals with contour integration: 

a. 
dx XK 

?K Ωx2 + 1æΩx ? 2iæΩx ? 3iæΩx ? 4iæ 
.


Ans. ? iZ

60 

. 

b.

1 ? cos 2x dx.
XK 

?K x2 

Ans. 2Z. 
c.


sin3x dx.
XK 

?K x3 

Ans. 3Z/4. 
d. 

X2Z 1 dO Ωa ; b ; 0æ. 
0 Ωa + b cos Oæ2 

/2Ans. 2Za/Ωa2 ? b2æ3 . 
e.


x sin x dx.
XK 

?K x2 ? 4Z2


Ans. Z.


4. Explain why the integral of (2.35) is not equal to the imaginary part of X e
z
iz 

dz. 
c 

5. Evaluate the integral 

sin x dx.XK 

?K x + i 

Explain why it is not fruitful to evaluate the integral 

J : XK eix 
dx. 

?K x + i 

Ans. Z 
e .


.
1 + 1 + z2


6. Consider fΩzæ : log 
2 

a. Find all possible branch points of this function.

Ans. 0, çi, K.


b. If we define 1 + z2 Pz:0 : 1, 

show that the origin is not a branch point of this function. Draw a set of branch cuts to make the 
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function single-valued.


7. Show that the Taylor series (2.20) is convergent inside the circle with center at z0 and with the 
radius equal to P z0 ? z1 P, where z1 is the singularity of fΩzæ nearest to z0.

Hint: Estimate the magnitude of fnΩz0æ with the use of the Cauchy integral formula.


8. Let fΩzæ and gΩzæ be analytic in a region R, and let z0 be an interior point of R. If fΩzæ : gΩzæ has 
at least one root in any neighborhood of z0, no matter how small this neighborhood is, prove 
that fΩzæ : gΩzæ in R. 
Hint: Let GΩzæ è fΩzæ ? gΩzæ and consider the Taylor series expansion of GΩzæ around z0. Show 
that, unless this series vanishes identically, it cannot vanish at z if z is sufficiently close to z0 but 
not equal to z0. 

dx 9. Let In : X 
0 

K 

1 + xn . 

a. Prove that In : Z . What is In in the limit n î K? 
n sinΩZ/næ 

b. Show that, as n î K, the limit of the integral In is equal to the limit of the integrand 
Ω1 + xnæ?1 integrated over ø0, K¿. 

10. Evaluate the following integrals making use of branch cuts: 
a.


ln2x dx.
XK 

0 1 + x2


Ans. Z3/8.

b. 

X1 1 x3 
dx. 

0 1 + x2 1 ? x

Z cosΩZ/8æ


Ans. Z ? 
21/4 

. 

11. Let z0 be an isolated singularity of fΩzæ, and let z be a point in the neighborhood of z0. Show 
that 

fΩzræ
fΩzæ : X fΩzræ 

dzr ? X dzr , 
CR zr ? z CK zr ? z 

where CR and CK are counterclockwise circles the centers of which are at z0 and the radii of 
which are R and K, respectively. Also, R is sufficiently large so that z is inside CR, and K is 
sufficiently small so that z is outside CK . Derive the Laurent series expansion of fΩzæ from the 
equation above and discuss the region where the series is convergent. 

12. Find the Fourier coefficient an for the following functions. What is the value of the Fourier 
series at O : Z? 

a. eO . 

Ans. an : 
Ω?1æn

eZ ? e?Z 
. The value of the series at O : Z is 1 ΩeZ + e?Zæ.

2Z 1 ? in 2 
b. 1 

a + bcos O 
. 

Ans. an : 2ZΩ?1æn a ? a2 ? b2 Ωn ; 0æ, a?n : an. The value of the 

. 

n 

O : Z Ωa ? bæ?1Fourier series at is 

/ bn a2 ? b2 

13. Find the Fourier transform of the following functions: 
a. e?PxP .


Ans. 2

1 + k2. 

. 

b. Ω1 + x2æ?2.

ZΩ1 +P k Pæ 

e?PkP
Ans. 
2

. 
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