
Singular Points of Ordinary Differential Equations 

Lecture 6 
Singular Points of Ordinary Differential 
Equations 

In the last chapter, we applied the method of separation of variables to various PDEs and found 
a number of transcendental equations. Two of them are 

d2y ? xy : 0 ΩAiry eq.æ 
dx2 

and 

x2 d
2y 

+ x 
dy 

+ Ωx2 ? p2æy : 0. ΩBessel eq.æ 
dx2 dx 

These equations cannot be solved in closed forms. 
As one handles real problems in the real world, one commonly encounters equations which 

cannot be solved in closed forms. In such cases it’s helpful if one is able to find approximate 
solutions for them. In this chapter, we’ll mainly focus on making approximations for equations 
which cannot be solved in closed form. 

A Taylor Series Solutions 
We will first consider the Airy equation 

y rr ? xy : 0. (6.1) 

Consider the initial value problem in which the values yΩ0æ and y rΩ0æ of the solution of this equation 
are given. 

Let’s express the solution in the Maclaurin series 

yΩxæ : > anxn (6.4) 

where the summation ostensibly covers all positive and negative n, but with the understanding that 

a

a?n : 0, n : 1, 2, ̀ . 

Thus (6.4) is indeed a Maclaurin series. 
We set n : 3m in (6.7); we get 

3Ωm?1æ a3m : 
32mΩm ? 1 æ 

. (6.8) 
3 

Note that we have taken care to write 

Ω3m ? 1æ : 3Ωm ? 1/3æ, 

making the coefficient of m inside the parenthesis unity. As we shall see, this makes it convenient to 
express a3m in terms of Gamma functions. 

Problem for the Reader: 
Keep applying (6.8), each time reducing m by unity, until you succeed in expressing a3m in terms 

of a0. 
Answer 

Since there is a factor 32 in the denominator of (6.8), we get an additional factor 32 in the 
denominator each time we apply (6.8). Thus, applying (6.8) m times, we get a factor 32m in the 
denominator. Similarly, the factor m in the denominator of (6.8) generates, as we apply (6.8) 

1successively, the factors mΩm ? 1æΩm ? 2æ`, and similarly for the factor Ωm ? 3 æ in the denominator 
of (6.8). Thus we get 

a
æ 

.0a3m : (6.9) 
132mømΩm ? 1æ 66 61¿ Ωm ? 3 æΩm ? 4 æ 66 6Ω 2 

3 3 

The expression (6.9) can be written in a more compact form. First of all, we note that 

mΩm ? 1æ 66 61 : m!. 

And, by (A.2) in this chapter’s Appendix 
<Ωm + a + 1æΩm + aæΩm + a ? 1æ`Ω1 + aæ :
<Ω1 + aæ 

, (6.10) 
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Singular Points of Ordinary Differential Equations 
where <Ωzæ is the Gamma function defined by 

<Ωzæ è XK 
e?ttz?1dt. (6.11) 

0 

Thus we have 
<Ω2/3æ a3m : 

a

32mm!<Ωm + 2/3æ 
a0. (6.12) 

Problem for the Reader: 
Express a3m+1 in terms of a3m?2. 

Answer 
Setting n : 3m + 1 in (6.7), we get 

3Ωm?1æ+1 a3m+1 : 
32 m + 1 

3 Ωmæ 
. (6.13) 

Problem for the Reader: 
Express a3m+1 in terms of a1. 

Answer 
We may derive from (6.13) and (6.10) that 

a3m+1 : a1<Ω4/3æ . (6.14) 
32mm!<Ωm + 4/3æ 

Thus the general solution of the Airy equation is 

yΩxæ : C1y1Ωxæ + C2y2Ωxæ, 

where 

m + 2 
, (6.15) y1Ωxæ :> x3m 

32mm!< 3m 

and 

m + 4 
, (6.16) y2 Ωxæ :> x3m+1 

32mm!< 3m 

with 

C1 è a0<Ω2/3æ and C2 è a1<Ω4/3æ. 

If x is small, taking a few terms of (6.15) and (6.16) gives a good numerical approximation of the 
solution of the Airy equation. 

But (6.15) and (6.16) are more useful than that. Indeed, the series can be used for any finite value 
of x, not just for small x. This is because the series is convergent even for large x. 

Homeworks due next Monday; 
Problems 1,2,3 and 4 of Chapter 6 in the textbook. 
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