
18.310 lecture notes September 2, 2013

Modular Arithmetic and Elementary Algebra

Lecturer: Michel Goemans

These notes cover basic notions in algebra which will be needed for discussing several topics
of this course. In particular, we will need them to describe the RSA cryptosystem, the primality
testing algorithms, and for the material on error-correcting codes that we will be covering later in
this course.

1 Euclid’s Algorithm

Euclid’s algorithm (or the Euclidean algorithm) is a very efficient and ancient algorithm to find the
greatest common divisor gcd(a, b) of two integers a and b. It is based on the following observations.
First, gcd(a, b) = gcd(b, a), and so we can assume that a ≥ b. Secondly gcd(a, 0) = a by definition.
Thirdly and most importantly, if

a = zb+ c

where z is an integer then gcd(a, b) = gcd(b, c). Indeed any divisor of a and b will divide c, and
conversely any divisor of b and c will divide a. We can compute c by taking the remainder after
dividing a by b, i.e. c is a mod b. (We will discuss the mod operation in greater details in the next
section, but at this point, we only need the definition of c as the remainder of dividing a by b.) But
c < b < a and thus we have made progress by reducing the numbers we have to compute their gcd
of. And therefore, we can proceed and express b as:

b = yc+ d,

(thus d = b mod c) and thus gcd(b, c) = gcd(c, d). We continue until we express gcd(a, b) as
gcd(g, 0) = g, and at that point, we have found the gcd.

Example. Let a = 365 and b = 211. Then c = 154 and we have that gcd(365, 211) =
gcd(211, 154). Continuing, we get:

gcd(365, 211) = gcd(211, 154)

= gcd(154, 57)

= gcd(57, 40)

= gcd(40, 17)

= gcd(17, 6)

= gcd(6, 5)

= gcd(5, 1)

= gcd(1, 0)

= 1.
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For example, 40 was found by taking 154 mod 57. The gcd of 365 and 211 is 1, which means that
they are relatively prime.

We now state an easy consequence of Euclid’s algorithm

Lemma 1. For any positive integers, there exist integers s and t such that gcd(a, b) = sa+ tb.

Indeed, Euclid’s algorithm also allows to find such integers s and t. This clearly proves that no
common divisor to a and b is greater than gcd(a, b) since any common divisor to a and b is also a
divisor to sa + tb. To find s and t, we proceed bottom up. Suppose we have found u and v such
that

gcd(b, c) = ub+ vc.

Then, knowing that a = zb+ c allows us to replace c by a− zb and therefore get:

gcd(a, b) = gcd(b, c) = ub+ v(a− zb) = va+ (u− vz)b.

Thus, we have expressed the gcd as an integer combination of a and b, knowing it as an integer
combination of b and c. Thus bottom up we can find s and t such that

gcd(a, b) = sa+ tb.

This procedure is often referred to as the extended Euclidean algorithm.

Example. Consider again the example with a = 365 and b = 211. We express their gcd(365, 211) =
1 by going bottom up in the derivation above, and derive:

1 = 6− 5
= 6− (17− 2 · 6) = −17 + 3 · 6
= −17 + 3 · (40− 2 · 17) = −7 · 17 + 3 · 40
= 3 · 40− 7 · (57− 40) = 10 · 40− 7 · 57
= 10 · (154− 2 · 57)− 7 · 57 = 10 · 154− 27 · 57
= 10 · 154− 27 · (211− 154) = 37 · 154− 27 · 211
= 37 · (365− 211)− 27 · 211 = 37 · 365− 64 · 211

There is another way to implement the extended Euclidean algorithm, which is a little easier to do
on a spreadsheet. If you are finding gcd(a, b) = gcd(a0, a1) and, after i steps, you have reduced to
it to the calculation of gcd(ai, ai+1) with ai ≥ ai+1, you can keep track of two numbers xi and yi
such that xia + yib equals ai. Initially, x0 = 1 and y0 = 0, as a0 = 1a + 0b. To find xi and yi, we
know that

ai−2 = xi−2a+ yi−2b

and
ai−1 = xi−1a+ yi−1b.

As ai = ai 2 − qai 1 where q is the integer part of the quotient between a a− i−2 and− i−1, we simply
let xi = xi 2 − qxi 1 and yi = yi 2 − qyi 1. Indeed, we have:− − − −

xia+ yib = (xi 2 − qxi 1)a+ (y− − i−2 − qyi−1)b

= ai−2 − qai−1

= ai.
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For example, we have
gcd x y

gcd(365, 211) 1 0
gcd(211, 154) 0 1
gcd(154, 57) 1 −1
gcd(57, 40) −1 2
gcd(40, 17) 3 −5
gcd(17, 6) −4 7
gcd(6, 5) 11 −19
gcd(5, 1) −26 45
gcd(1, 0) 37 −64

Here we found that 6 = 11∗365−19∗211 by subtracting twice the equation 17 = −4 ·365+7∗211
from 40 = 3 ∗ 365− 5 ∗ 211.

2 Modular Arithmetic

We will now consider algebraic structures. Before going into the general definitions, we introduce
a very important example called modular arithmetic, which is one of the most intuitive examples
of algebraic structures. In fact, this is the example we shall need for the RSA cryptosystem.

First an easy definition: for integers a, b,m we say that

a ≡ b (mod m)

if a− b is a multiple of m. That is, if
a− b = im

for some integer i ∈ Z. Here, ”mod” is short for ”modulo”.
For any integer n ∈ Z there is a unique integer r in {0, 1, . . . ,m − 1} such that n ≡ r mod m.

Then r is called the residue of n modulo m, and by slight abuse of notation we will refer to it as
n mod m. One can find the residue of a number n by taking the remainder when dividing by m.
Although we will often us them interchangeably, there is a slight difference between a = n mod m
and a ≡ n (mod m); in the former case, a is the residue and thus between 0 and m − 1. In later
notes, however, we typically simply write a = n (mod m) and the interpretation is usually clear.

We can then define binary operations ⊕,⊗ on the set Zm :=
Z

{0, 1, . . . ,m − 1} as follows. For
a, b ∈ m we define a ⊕ b to be the residue of (a + b) modulo m. Similarly, we define a ⊗ b to be
the residue of (a× b) modulo m.

Example. In Z5, one has 3⊕ 4 = 2 and 3⊗ 4 = 2.

For a ∈ Zm, we denote �a the residue of −a modulo m. Here are a few very easy facts that
the reader is invited to check. If a ∈ Zm and d = �a then

a⊕ 0 = 0⊕ a = a,

and
a⊕ d = d⊕ a = 0.
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Moreover, for all a, b, c ∈ Zm,
(a⊕ b)⊕ c = a⊕ (b⊕ c).

In the next section we will define groups and see that the above relation are precisely the
conditions showing that (Zm,⊕) is a group. If we consider the operation ⊗, the role of 0 for ⊕ is
now played by 1 since a ⊗ 1 = 1 ⊗ a = a. 1 is the multiplicative identity, in the same way as 0
was the additive identity. However 0 never has a multiplicative inverse (in the same way as �a is
playing the role of the additive inverse); the multiplicative inverse of an element a is defined as an
element b such that b⊗ a = 1. Even if we exclude 0 and consider Zm − {0}, we will see that some
nonzero elements may not have a multiplicate inverse. However, when m is a prime number, we
will see that (Zm − {0},⊗) is a group

Considering the general notion of group allows one to prove theorems that are valid for all
groups, instead of doing a proof for each individual example. For instance we will prove Fermat’s
Little Theorem using general results about groups.

3 Groups

We now discuss algebraic structures and their properties. This is presented in more depth than
what we really need at this point.

Given a set G and a binary operation ∗, if each element in the set obeys the following 4
properties, then the set and its operation (G, ∗) is called a group.

(i) Closure. If a, b ∈ G, them a ∗ b ∈ G.

(ii) Associativity. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(iii) Existence of an identity element. Suppose e ∈ G is the identity element, then a∗e = e∗a = a
for all a ∈ G.

(iv) Inverse. For every a ∈ G, there exists an a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

If, in addition, each pair of elements a, b ∈ G satisfies the commutative property, a ∗ b = b ∗ a,
then the group (G, ∗) is called an Abelian group.

Examples:
• The set integers form an (Abelian) group under addition as the rule of composition; and so do
the rational, real, or complex numbers. The identity element e in these cases are the number 0,
and the inverse of a is −a.
• The integers under multiplication, (Z, ∗), is not a group since the integers a = 1,−1 don’t have
an inverse.
• If one leaves out zero, the additive identity element, the rational, real, and complex numbers each
form an (Abelian) group under the operation of multiplication. We need to leave out zero since
this element does not have a multiplicative inverse.
• Let Gln be the set of invertible n×n matrices with the usual matrix product as operation. Then
(Gln, ∗) is a group (with identity the identity matrix) which is not Abelian (as matrix multiplication
is not commutative in general).
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• Remainders formed by dividing by a polynomial do likewise. For example, if we take the remain-
der after dividing by say x3 + 2x2 + 1, we can get all polynomials of degree 2 as remainders, and
the identity is the 0 polynomial (p(x) = 0 everywhere) and the inverse of p(x) is −p(x).

In the previous section we have checked that for any integer m the set (Zm,⊕) is a group, with
identity element 0. The additive inverse of an element a = 0 is �a = m− a. Now we consider the
more interesting question: for which integer m does (Zm − {0},⊗) is a group? First of all closure
and associativity are clear, and 1 is the identity. So the question is to know whether every element
has a (multiplicative) inverse. First observe that 0 cannot have a multiplicative inverse (indeed
b⊗ 0 = 0 = 1 for all b ∈ Zm) and that’s why we excluded it from the start. Now suppose a ∈ Zm is
relatively prime with m. In this case, we know by Euclid’s algorithm that there exist integers s, t
such that

as+mt = gcd(a,m) = 1.

Thus 1 = as mod m. Hence taking r ∈ Zm the residue of s modulo m one gets a⊗ r = 1. We have
just proved that the elements a ∈ Zm−{0} which are relatively prime with m have a multiplicative
inverse. Thus if m is a prime number, every element in Zm − {0} has a multiplicative inverse so
that (Zm − {0},⊗) is a group.

Now if m is not a prime. Consider an element a ∈ Zm − {0} which is not relatively prime with
m. Let d = gcd(a,m) = 1. This means that, for any b, ab is an integer multiple of d and thus
cannot give a residue of 1 modulo m. Thus a cannot have a multiplicative inverse. So the elements
not prime with m have no inverse in (Zm,⊗). But we can still salvage a multiplicative group as we
show now.

For any integer m we denote by Z
∗
m the remainders that are relatively prime to m. For instance

if m is prime then Z
∗
m = Zm − {0} while for m = 15 one gets Z

∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}. The

product of any two element relatively prime to m is still relatively prime to m, and every element
has an inverse so it is easy to see that (Z∗

m,⊗) is a group.

4 Subgroups and cosets

The number of elements in a group G is called the order of G, written |G|.

Example. The order of (Z ZN ,⊕) is N . The order of ( ∗
N ,⊗) is the number of remainders which

are relatively prime to N . If N is a prime then Z
∗
N = ZN − {0} and the order in N − 1. Now

consider the situation where N = pq, where p and q are primes. In this case the order of (Z∗
N ,⊗) is

(p− 1)(q− 1) = N − p− q+1. To see this, observe that the remainders in {1, . . . , N − 1} that have
a factor in common with N are multiples of either p or q but not of both. There are q − 1 of the
former type, p− 1 of the latter. So the order of Z∗

N is (N − 1)− ((p− 1)+ (q− 1)) = N − p− q+1.
For example, for N = 15, we have that the order of Z∗

15 is 2 · 4 = 8, and indeed, this is the number
of elements we found.

A group G is said to have a subgroup H if H is a subset of G, and H is also a group (under the
same operation ∗ as G). Check for yourself, that if we know G is a group, and we want to know
if some subset H of G is a subgroup, the only group properties we really have to check are closure
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and inverses. We now are ready to state (and prove) one of the simplest and most fundamental
facts about groups.

Theorem 1 (Lagrange’s Theorem). Suppose |G| is finite, and H is a subgroup of G. Then |H|
divides |G|.

For example, take for G the multiplicative group Z
∗
7 with 6 elements, and consider H to be

subgroup consisting of all the distinct powers of 2, that is 2, 21 = 2, 22 = 4, 23 = 1 mod 7. H is
a subgroup (since it is closed and every element has an inverse), and the order of H is 3 which
divides the order of G (equal to 6).

Proof. Suppose H has h elements. We will partition the elements of G into disjoint ’copies’ of H.
Each such copy will be of the form xH, where x is an element of G and xH = {xy : y ∈ H} denotes
the h elements obtained by multiplying (i.e. performing the group operation) x by each element of
H. (In the example above, 3H corresponds to {3⊗ 1, 3⊗ 2, 3⊗ 4} = {3, 6, 5} where

Z

⊗ corresponds
to multiplication in ∗

7.)
Suppose we have already identified x1, · · · , xj such that all xkH are disjoint for k = 1, · · · , j.

So far, these sets cover precisely jh distinct elements of G. To initialize this process, we set x1 = e
(where e is the identity element) and j = 1. Now, either we have all elements of G or we don’t. In
the first case, we know that |G| = j|H| and we are done. In the second case, let xj+1 be an element
of G which is not of the form xkq for k ≤ j and some q in H.

We now add to our list the h additional elements xj+1H of G. We prove that these elements
are all new and distinct: if xj+1h1 = xj+1h2 holds then by multiplying on the left of both sides of
this equation by x−j

1
+1 we find that h1 and h2 are equal; if xkg = xj+1h holds for some g and h in

H and k ≤ j, then upon postmultiplying both sides of this equation by h−1 we get

xkgh
−1 = xj+1

and therefore xj+1 ∈ xkH (since gh−1 ∈ H by closure and the existence of inverse), a contradiction.
We then increase j by 1 and repeat. If G is finite, this argument must come to an end which can
only happen when the order of G is jh for some j.

Let x be an element of a finite group G. The powers of x form a subgroup of G called the group
generated by x, and we define the order of an element x to be the order of that subgroup. One can
see that the order of x is the smallest positive power k such that xk = 1 (indeed if there were two
indices j, l with j < l ≤ k and xj = xl, then xl−j = 1 contradicting the definition of k). Hence
for all x ∈ G, we must have xo(x) = 1, where o(x) denote the order of x. If we apply Lagrange’s
theorem to G and x ∈ G, then we see that o(x) divides the order |G| of G, and therefore xo(x) = 1
implies that x|G| = 1 for all x ∈ G. In particular, if we take G = Z

∗
p with p prime, we get Fermat’s

little theorem (since the order of Z∗
p is p− 1):

Theorem 2 (Fermat’s little theorem). If p is prime and a is not divisible by p then ap−1 = 1 mod p.

Also, if we take G = Z
∗
N with N = pq, p and q being prime, we get that |G| = (p

(
− 1)(q − 1)

and thus x p−1)(q−1) = 1 for all x relatively prime with pq.

Cosets of normal subgroups.
Let G be a group and H be a subgroup with h elements. For any group element x ∈ G, the h
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elements of G of the form xH form what is called a left coset of the subgroup H; a right coset is
similarly defined as Hx. If the right and left cosets for each element are the same so that for all a
in G we have aH = Ha, then H is said to be normal. In Abelian groups, all subgroups are normal.

If H is a normal subgroup of G, then its cosets form a group under the rule of composition
aHbH = abH; this subgroup is called the factor group G/H of G with respect to H.

For example, if G is the group Z of integers under addition, and H is the subgroup consisting
of those integers divisible by n (which we denote by nZ), then the factor group has elements which
correspond to the remainders upon dividing integers by n. This is called, as we remarked earlier,
Zn, and is often referred to as the integers mod n. Thus Z can be seen as the factor group Z/nZn

of the group (Z,+).

5 The Chinese Remainder Theorem

This theorem was discovered by the Chinese mathematician Sun Tzu in the 4-th century AD and
written in his book the Sun Tzu Suan Ching. It says the following. If a and b are relatively
prime then there is a bijection between the possible remainders modab and the pairs of possible
remainders moda and modb. In other words, the two numbers (the remainder of x upon dividing
by a and the remainder of x upon dividing by b) uniquely determines the number x upon dividing
by ab, and vice versa. Let’s look at an example. Let a = 7 and b = 13, then ab = 91. Any
arbitrary remainder, say 73 mod 91, is equivalent to the pair (3, 8) = (73 mod 7, 73 mod 13). No
other remainder mod 91 leads to the pair (3, 8).

Theorem 3 (Chinese Remainder Theorem). Let a and b be integers that are relatively prime. Each
pair of remainders (r, s) mod a and b separately corresponds to exactly one remainder t mod ab
such that r = t mod a and s = t mod b.

Moreover, if one adds or multiplies remainders with respect to ab, the corresponding remainders
with respect to a and b separately add or multiply correspondingly.

Proof. In order to show this, first note that the number of possible remainders modab is ab, while
the number of pairs of possible remainders mod a and mod b is also ab. To any remainder t mod ab,
there corresponds a pair (t mod a, t mod b) of remainders moda and modb. So we only need to
show that there cannot exist two distinct remainders x and y upon dividing by ab, and that x and
y have the same remainders upon dividing by a and by b. Suppose the contrary. In this case, both
a and b divide the difference x− y. Since we assumed that a and b are relatively prime, it implies
that ab divides x− y. This implies that x and y have the same remainder upon dividing by ab and
are therefore equal. This is a contradiction. Thus, each remainder of ab corresponds to a unique
pair of remainders for a and b separately. This proves the first statement of the theorem. The
second statement is easy to check and is left to the reader.

By the above theorem, we can now describe remainders with respect to ab by the corresponding
pairs of remainders with respect to a and b separately: we let (s, t) represent the remainder that is
s with respect to a and t with respect to b.

Now suppose that we want to find the remainder modulo ab that correspond to the pair (s, t).
Let x ∈ {0, 1, . . . , ab − 1} be this remainder. We know that s = x mod a and t = x mod b. In
particular, x = kb + t where 0 ≤ k < a. Moreover s ≡ kb + t (mod a), hence kb ≡ s − t (mod a).
Now recall that b has a multiplicative inverse in the group (Z∗

a,⊗), and that this inverse can be
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found using Euclid’s algorithm. Using this inverse we can compute k = b−1(s− t) mod a, and then
compute x = kb+ t.

Now let us play a little bit with the remainder pairs representations. Let us try for instance
to find the solutions of the equation x2 = 1 mod ab where a and b are relatively prime. Since
the remainder 1 mod ab is represented by the remainder pair (1, 1) (where the pair represents the
values modulo a and b), it is easy to see that this equation has four solutions: the remainder pairs
(1, 1), (−1, 1), (1,−1), (−1,−1). (Here, (−1, 1) is a convenient notation for (a − 1, 1).) Why are
these all solutions to x2 = 1 mod ab? For any x ∈ {(1, 1), (−1, 1), (1,−1), (1, 1)}, we have that
x2 gets represented by ((±1)2, (±1)2) = (1, 1) and, by the Chinese remainder theorem, the only
remainder mod(ab) that corresponds to this is 1.

For example, consider a = 3 and b = 5. The remainders r = 1, 4, 11, and 14 are relatively
prime to ab = 15, and correspond to the remainder pairs (1, 1), (1,−1) = (1, 4), (−1, 1) = (2, 1)
and (−1,−1) = (2, 4) respectively. In each case, r ≡ ±1 (mod 3) and r ≡ ±1 (mod 5) so that
r2 ≡ (±1)2 ≡ 1 (mod 3) and r2 ≡ (±1)2
2 2 2

≡ 1 (mod 5), so that r2 ≡ 1 (mod 15). And indeed
1 = 1, 4 = 16, 11 = 121, and 142 = 196 are all ≡ 1 mod 15.

6 Fields and algebraic equations

(F,+, ∗) is a field if

1. (F,+) is an Abelian group with identity element denoted 0.

2. (F − {0}, ∗) is an Abelian group with identity element denoted 1 = 0.

3. Distributive property. For all a, b, c ∈ F , a ∗ (b+ c) = (a ∗ b) + (a ∗ c).
From our previous discussion on Zm it is easy to see that if (Zm,⊕,⊗) is a field if and only if

m is a prime. The rationals, real or complex numbers (with usual addition and multiplication) are
also fields.

Fields have the important property that the product of any two non-zero elements is not zero.

Lemma 2. If a and b belong to a field F and ab = 0. Then either a = 0 or b = 0.

Proof. Suppose that neither a nor b is 0. Then a−1 and b−1 exist and (b−1)(a−1)(ab) = 1. This
implies that ab has an inverse, but this cannot be true since ab = 0. A contradiction.

Lemma 3. If a is a solution of the polynomial equation p(x) = 0 with coefficients in a field, then
(x− a) divides p(x).

Proof. We can express p(x) = q(x)(x − a) + r for some polynomial q(x) and remainder r. Since
p(a) = 0, this implies that r = 0.

We can now prove the fundamental theorem of algebra.

Theorem 4. A polynomial of degree d ≥ 1 with coefficients in a field F can have at most d roots
in F .
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Proof. We will show this by induction on k. If ax+ b = 0, then x = −ba−1 is the unique solution,
so the statement is true for k = 1. Let p(x) be a polynomial of degree d > 1, and let x = a be one
of its roots. By lemma 3, we have p(x) = (x− a)q(x), where q(x) is a polynomial of degree d− 1,
and by the induction hypothesis, q(x) has at most d − 1 roots. Lemma 2 says that every root of
q(x)(x− a) is either a root of q(x) or a root of (x− a). Thus, this implies that p(x) = q(x)(x− a)
has at most (d− 1) + 1 = d roots.
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