
18.310 lecture notes November 18, 2013

Fast Fourier Transform

Lecturer: Michel Goemans

In these notes we define the Discrete Fourier Transform, and give a method for computing it
fast: the Fast Fourier Transform. We then use this technology to get an algorithms for multiplying
big integers fast. Before going into the core of the material we review some motivation coming from
the classical theory of Fourier series.

1 Motivation: Fourier Series

In this section we discuss the theory of Fourier Series for functions of a real variable. In the next
sections we will study an analogue which is the “discrete” Fourier Transform.

Early in the Nineteenth century, Fourier studied sound and oscillatory motion and conceived of
the idea of representing periodic functions by their coefficients in an expansion as a sum of sines
and cosines rather than their values. He noticed, for example, that you can represent the shape of
a vibrating string of length L, fixed at its ends, as

∞
y(x) =

∑
ak sin(πkx/L).

k=1

(Observe that indeed y(0) = y(L) = 0.) The coefficients, ak, contain important and useful infor-
mation about the quality of the sound that the string produces, that is not easily accessible from
the ordinary y = f(x) description of the shape of the string.

This kind of representation is called a Fourier Series, and there is a tremendous amount of
mathematical lore about properties of such series and for what classes of functions they can be
shown to exist. One particularly useful fact about them is the orthogonality property of sines:∫ L L

sin(πkx/L) sin(πjx/L)dx = δj,k ,
x=0 2

for nonnegative integers j and k. Here δj,k is the Kronecker delta function, which is 0 if j = k and
1 if j = k. The integral above, then, is 0 unless j = k, in which case it is L/2. To see this, you can
write

1 1
sin(πkx/L) sin(πjx/L) = cos(π(k j)x/L)

2
− − cos(π(k + j)x/L),

2

and realize that unless j = ±k, each of these cosines integrates to 0 over this range.
By multiplying the expression for y(x) above by sin(πjx/L), and integrating the result from 0

to L, by the orthogonality property everything cancels except the sin(πjx/L) term, and we get the
expression

2
aj =

L

∫ L

f(x) sin(πjx/L)dx.
x=0

Now, the above sum of sines is a very useful way to represent a function which is 0 at both
endpoints. If we are trying to represent a function on the real line which is periodic with period L,

FFT-1

�

it is not quite as useful. This is because the sum of sines above is not periodic with period L but
only periodic with period 2L. For periodic functions, a better Fourier expansion is

∞ ∞
y(x) = a0 +

∑
aj cos(2πjx/L) +

j=1

∑
bk sin(2πkx/L).

k=1

It is fairly easy to rewrite this as a sum of exponentials (over the complex numbers), using the
identity eix = cos(x) + i sin(x) which implies

eix + e−ix

cosx =
2

eix
sinx =

− e−ix

.
2i

This results in the expression (with a different set of coefficients cj)

1
∞

y(x) =
∑

c e2πijx/Lj , (1)
L

j=−∞

where i is the standard imaginary unit with i2 = 1. The scaling factor 1 is introduced here forL
simplicity; we will see why shortly. The orthogonality relations are now∫ L

e2πijx/Le2πikx/Ldx = δ j,kL,
x=0

−

and thus, after dividing by L, we get that the integral is 0 or 1. This means that we now can
recover the cj coefficient from y by calculating the integral

c =

∫ L

y(x)e−2πijx/L
j dx. (2)

x=0

(2) is referred to as the Fourier transform and (1) to as the inverse Fourier transform. If we hadn’t
introduced the factor 1/L in (1), we would have to include it in (2), but the convention is to put
it in (1).

2 The Discrete Fourier Transform

Suppose that we have a function from some real-life application which we want to find the Fourier
series of. In practice, we’re not going to know the value of the function on every point between
0 and L, but just on some finite number of points. Let’s assume that we have the function at n
equally spaced points, and do the best that we can. This gives us the finite Fourier transform, also
known as the Discrete Fourier Transform (DFT).

We have the function y(x) on points j, for j = 0, 1, . . . , n−1; let us denote these values by yj for
j = 0, 1, · · · , n − 1. We define the discrete Fourier transform of y0, . . . , yn 1 to be the coefficients−
c0, . . . , cn−1, where

n−1

ck =
∑

yje
−2πijk/n, (3)

j=0

FFT-2

for k = 0, · · · , n− 1.
Observe that it would not make sense to define (these complex Fourier coefficients) ck for more

values of k since the above expression is unchanged when we add n to k (since e2πi = 1). This
makes sense — if we start with n complex numbers yj ’s, we end up with n complex numbers ck’s,
so we keep the same number of degrees of freedom.

Can we recover the yj ’s, given the ck’s? Yes, this is known as the inverse Fourier transform,
and is stated below.

Theorem 1. If c0, c1, . . . , cn 1 is the discrete Fourier transform of y− 0, . . . , yn−1. Then

n 1
1

−
yj =

n

∑
c 2
ke

πijk/n, (4)
k=0

for j = 0, · · · , n− 1.

The equation (4) is known as the inverse discrete Fourier transform. Observe that this is similar
to (1), except that the scaling factor 1 which replaces 1 is not at the same place.1n L

The proof of Theorem 1 will be based on the following lemma.

Lemma 1. If z is a complex number satisfying zn = 1 and z, z2, . . . , zn−1 = 1 then we have the
following “orthogonality relation”: for all j, k ∈ {0, 1, . . . , n− 1},

n−1∑
zjlz−kl = nδj,k,

l=0

where δj,k is the Kronecker delta function, which is 0 if j = k and 1 if j = k.

Observe that z = e−2πi/n satisfies the condition of the Lemma 1 so the orthogonality relations
turn into the sum

n−1∑
e−2πijl/ne2πikl/n = nδj,k.

l=0

Proof of Lemma 1.

n−1 n−1 n−1∑
zjlz−kl =

l=0

∑
(zj−k)l =

l=0

∑
wl

l=0

where w = zj−k. If k = l then w = 1 and the above sum equals n. On the other hand, if
k = l then our assumption on zi = 1 for i ∈ {1, 2, · · · , n − 1} means that w = 1. Thus, we have∑n−1

l=0 wl = (wn − 1)/(w − 1) = 0, since wn = 1.

We are now ready to prove the Theorem.

1This is just a matter of convention. Actually, to avoid the confusion that this 1 factor may create, sometimes√ n

this factor of 1/n is distributed equally, with a 1/ n on both the forward and the inverse Fourier transforms; we will
not use this.

FFT-3

�

�

� � �

Proof of Theorem 1. The definition of ck can be written as

n−1

c =
∑

y zkjk j ,
j=0

where z = e−2πi/n.
Now we can compute

n
1

−1 n−1∑ 1
c 2πijl/n jl
le =

n n
l=0

n

∑
clz

−

k=0

1
−1 n−1

=
n

∑
(ykz

kl)z−jl

l=0

n

∑
k=0

−1 n−
=

∑
yk

(
1

1
zklz−jl

n
k=0

∑
l=0

)

= yj .

where the last equality comes from applying Lemma 1 to z (which shows that all but one of the
inner sums are 0).

3 Computing the discrete Fourier transform

It’s easy to compute the finite Fourier transform or its inverse if you don’t mind using O(n2)
computational steps. The formulas (4) and (3) above both involve a sum of n terms for each of n
coefficients. However, there is a beautiful way of computing the finite Fourier transform (and its
inverse) in only O(n log n) steps.

One way to understand this algorithm is to realize that computing a finite Fourier transform is
equivalent to plugging into a degree n − 1 polynomial at all the n n-th roots of unity, e2πik/n, for
0 ≤ k ≤ n − 1. (Recall that an n-th root of unity is any (complex) number such that zn = 1; for
example, the 4th root of unity are 1, eiπ/2 = i, eiπ = −1 and ei3π/2 = −i.) The Fourier transform
and its inverse are essentially the same for this part, the only difference being which n-th root of
unity you use, and that one of them has to get divided by n. So, let’s do the forward discrete
Fourier transform (3).

Suppose we know the values of yj and we want to compute the ck using the Fourier transform,
(3). Let the polynomial p(x) be

n−1

p(x) =
∑

yjx
j .

j=0

Now, let z = e−2πi/n. Then, it is easy to check that we have

ck = p(zk).

This shows we can express the problem of computing the Fourier transform as evaluating the
polynomial p (of degree n − 1) at the n-th roots of unity. (If we were computing the inverse one

FFT-4

(i.e. exchange the role of y and c), we would use the root z = e2πi/nj k and divide the overall result
by 1/n.)

What we will show is that if n is even, say n = 2s, it will be possible to find two degree s − 1
polynomials (thus of degrees roughly half the degree of p(x)), peven and podd, such that we get all n
of the values ck for 0 ≤ k ≤ n− 1 by plugging in the s-th roots of unity (rather than the n-th roots
of unity) into peven and podd. The evaluation of p at even powers of z will appear when evaluating
peven, and the odd powers of z will appear in podd. If n is a multiple of 4, we can then repeat this
step for each of peven and podd, so we now have our n values of ck appearing as the values of four
polynomials of degree n/4− 1, when we plug the n -th units of unity, i.e., the powers of z4, into all4
of them. If n is a power of 2, we can continue in the same way, and eventually reduce the problem
to evaluating n polynomials of degree 0. But it’s really easy to evaluate a polynomial of degree 0:
the evaluation is the polynomial itself, which only has a constant term. So at this point we will be
done.

The next question we address is: how do we find these two polynomials peven and podd? We will
do the case of peven first. Let us consider an even power of z, say z2k, at which we want to evaluate
p(·). We look at the j-th term and the (j + s)-th term. These are

yjz
2kj and yj+sz

2kj+2ks.

But since z2s = zn = 1, we have
z2kj+2ks = z2kj .

Thus, we can combine these terms into a new term in the polynomial peven, with coefficients

bj = yj + yj+s.

If we let
s−1

peven(x) =
∑

bjx
j

j=0

we find that
p(z2k) = peven(z

2k).

Observe furthermore that since zk is an n-th root of unity, z2k is an s-th root of unity (since n = 2s).
Now, let us do the case of the odd powers. Suppose we are evaluating p at an odd power of z,

say z2k+1. Again, let’s consider the contribution from the j-th and the (j + s)-th terms together.
This contribution is

yjz
(2k+1)j + y +

j sz
(2k+1)(j s)

+ .

Here we find that z(2k+1)s = e(2πi)(2k+1)s/n = e(πi)(2k+1) = −1. We now have

y z(2k+1)j + y z(2k+1)(j+s) = (y zj)z2kj j
j + (2

j+s j yj+sz)z kj(−1)

= (yj − y j 2kj
j+s)z z .

Setting the j-th coefficient of podd to

b̃j = (yj − yj+s)z
j

FFT-5

and letting
s−1

podd(x) =
∑

b̃jx
j

j=0

we see that
p(z2k+1) = podd(z

2k).

What we just did was reduce the problem of evaluating one degree n− 1 polynomial, p, at the
n-th roots of unity to that of evaluating two degree n

2 − 1 polynomials, podd and peven at the n -th2
roots of unity. That is, we have taken a problem of size n and reduced it to solving two problems
of size n . We’ve seen this type of recursion before in sorting, and you should recognize that it will2
give you an O(n log n) algorithm for finding the finite Fourier transform.

So now, we can show how the Fast Fourier transform is done. Let’s take n = 2t. Now, consider
an n× t table, as we might make in a spreadsheet. Let’s put in our top row the numbers y0 through
yn 1. In the next row, we can, in the first n places, put in the coefficients of p i− even, and then n2
the next n places, put in the coefficients of podd. In the next row, we repeat the process, to get2
four polynomials, each of degree n − 1. After we have evaluated the second row, we treat each of4
p n
even and podd separately, so that nothing in the first columns subsequently affects anything in2

the last n columns. In the third row, we will have in the first n places the coefficients of peven,even,2 4
which give us the value of p(z4k) when we evaluate p (z4k). Then in the next n

even,even places, we4
put in the coefficients of peven,odd. This polynomial will give the value of p(z4k+2) when we evaluate
peven,odd(z

4k). The third n places will contain the coefficients of podd,even, which gives us the values4
of p(z4k+1). The last n places will be occupied by the coefficients of p4 odd,odd, which gives the values
of p(z4k+3). From now on, we treat each of these four blocks of n columns separately. And so on.4

There are two remaining steps we must remember to carry out. The first step arises from the
fact that is that the values of p(zk) come out in the last row in a funny order. We have to reshuffle
them so that they are in the right order. I will do the example of n = 8. Recall that in the second
row, the polynomial po, giving odd powers of z, followed pe, giving even powers of z. In the third
row, first we get the polynomial giving z4k, then z4k+2, then z4k+1, then z4k+3. So in the fourth
row (which is the last row for n = 8), we get the values of p(zk) in the order indicated below.

0 1 2 3 4 5 6 7

coefficients of p

p (z2k) = p(z2k) p (z2k 2
e o) = p(z k+1)

p (z4k) = p(z4k) p (z4k) = p(z4k+2
e,e e,o) po,e(z

4k) = p(z4k+1) po,o(z
4k) = p(z4k+3)

p(z0) p(z4) p(z2) p(z6) p(z1) p(z5) p(z3) p(z7)

You can figure out where each entry is supposed to go is by looking at the numbers in binary, and
turning the bits around. For example, the entry in column 6 (the 7th column as we start labeling
with 0) is p(z3). You can figure this out by expressing 6 in binary: 110. You then read this binary
number from right to left, to get 011, which is 3. Thus, the entry in the 6 column is p(z3). The
reason this works is that in the procedure we used, putting in the even powers of z first, and then
the odd powers of z, we were essentially sorting the powers of z by the 1’s bit. The next row ends
up sorting them by the 2’s bit, and the next row the 4’s bit, and so forth. If we had sorted starting
with the leftmost bit rather than the rightmost, this would have put the powers in numerical order.
So, by numbering the columns in binary, and reversing the bits of these binary numbers, we get
the right order of the transformed sequence.

FFT-6

The other thing we have to do is to remember to divide by n if it is necessary. We only need
do this for the inverse Fourier transform, and not the forward Fourier transform.

4 Computing convolutions of sequences using Fast Fourier Trans-
form

Suppose you have two sequences f0, f1, . . . , fn 1 and g0, g1, . . . , gn t−1 and wan to compute the−
sequence h0, h1, . . . , hn defined by−1

n−1

hk =
∑

fjgk−j

j=0

where the index k−j is taken modulo n. Clearly it is possible to compute the numbers h0, . . . , hn−1

in n2 arithmetic operations. We will now explain how to do it faster.
Let ak and bk be the discrete Fourier transform of fk and gk and their finite Fourier, that is,

ak =
∑

fje
−2πijk/n

j

bk =
∑

gje
−2πijk/n.

j

Now let’s compute the inverse Fourier transform of the sequence akbk. For all l = 0, · · · , n− 1 we
get :

1 ∑ 1 ′
e2πilk/na 2πilk/n 2πijk/n 2πij k/n

kbk = e fje
−

k

∑
j

∑
gj′e

−
n n

∑
k j′

1
=

∑∑
f g

∑
e2πik(lj j′

−j−j′)/n
n

j j′ k

n−1

=
∑

fjgl−j

j=0

= hl

where the second last equality holds because the sum over k is 0 unless l ≡ j + j′ (mod n).
We have just found a way of computing the sequence h0, h1, . . . , hn−1 by first applying Fourrier

transform to the sequences f0, f1, . . . , fn 1 and g0, g1, . . . , gn 1 and then taking the inverse Fourier− −
transform of the sequence akbk. Since the Fourier transforms and inverse Fourrier transform can be
computed in O(n log(n)) operations, the sequence h0, h1, . . . , hn−1 can be computed in O(n log(n))
instead of O(n2) operations.

We can now use this method in order to multiply polynomials efficiently. Suppose we have two
degree d polynomials, and we want to multiply them. This corresponds to convolution of the two
series that make up the coefficients of the polynomials. If we do this the obvious way, it takes
O(d2) steps. However, if we use the Fourier transform, multiply them pointwise, and transform
back, we use O(d log d) steps for the Fourier transforms and O(d) steps for the multiplication. This
gives O(d log d) total, a great savings. We must choose the n for the Fourier series carefully. If we
multiply two degree d polynomials, the resulting polynomial has degree 2d, or 2d + 1 terms. We

FFT-7

must choose n ≥ 2d+ 1, because we need to have room in our sequence f0, f1, . . . fn−1 for all the
coefficients of the polynomial; if we choose n too small, the convolution will “wrap around” and
we’ll end up adding the last terms of our polynomial to earlier terms.

5 Fourier transforms modulo p and fast integer multiplication

So far, we’ve been doing finite Fourier transforms over the complex numbers. We can actually
work over any field with a primitive n-th root of unity, that is, a number z such that zn = 1 and
z, z2, . . . , zn−1 = 1. Indeed if such a z exists, we can define the Fourier transform of some number
y0, . . . , yn−1 as

n−1

ck =
∑

yjz
−jk.

j=0

In this case we can prove similarly as in Section 2 that the inverse Fourier transform is

n−1

yj = n−1
∑

c zjkk .
k=0

The factor n−1 is the multiplicative inverse of n over this field, and comes from the fact that∑n 1 0
k=0
− z = n.
If we take a prime p, then the field of integers mod p has a primitive n-th root of unity if

p = mn + 1 for some integer m. In this case, we can take the Fourier transform over the integers
mod p. Thus, 17 has a primitive 16-th root of unity, one of which can be seen to be 3. (By Fermat’s
little theorem, any a = 0 satisfies a16 ≡ 1 (mod 17), but for many a’s, a smaller power than 16
will give 1. For example, modulo 17, 1 is a primitive 1st root of unity, 16 is a primitive 2nd root
of unity, 4 and 13 are primitive 4-th root of unity, 2, 8, 9 and 15 are primitive 8th roots of unity
and 3, 5, 6, 7, 10, 11, 12 and 14 are primitive 16-th root of unity.) So if we use z = 3 in our fast
Fourier transform algorithm, and take all arithmetic modulo 17, we get a finite Fourier transform.
And we have seen how to compute n−1 modulo a prime p by the Euclidean gcd.

We can use this for multiplying polynomials. Suppose we have two degree d polynomials, each
of which has integer coefficients of size less than B. The largest possible coefficient in the product is
(B− 1)2(d+1). If we want to distinguish between positive and negative coefficients of this size, we
need to make sure that p > 2(B−1)2(d+1). We also need to choose n ≥ 2d+1, so as to have at least
as many terms as there are coefficients in the product. We can then use the Fast Fourier transform
(mod p) to multiply these polynomials, with only O(d log d) operations (additions, multiplications,
taking remainders modulus p), where we would have needed d2 originally.

Now, suppose you want to multiply two very large integers. Our regular representation of these
integers is as

∑
k dk10

k, where d k
k are the digits. We can replace this by

∑
k dkx to turn it into a

polynomial, then multiply the two polynomials using the fast Fourier transform.
How many steps does this take? To make things easier, let’s assume that our large integers are

given in binary, and that we use a base B which is a power of 2. Let’s assume the large integers
have N bits each and that we use a base B (e.g., 10 in the decimal system, 2 in binary) that has
b bits. We then have our number broken up into N/b “digits” of b bits each. How large does our
prime have to be? It has to be larger than the largest possible coefficient in the product of our two

FFT-8

�

�

polynomials. This coefficient comes from the sum of at most N/b terms, each of which has size at
most (2b − 1)2 < 22b. This means that we are safe if we take p at least

N
()22b
b

or taking logs, p must have around 2b+ log N
2 bits.b

Rather than optimizing this perfectly, let’s just set the two terms in this formula to be approx-
imately equal by letting b = log2N ; this is much simpler and will give us the right asymptotic
growth rate. We thus get that p has around 3 log2N bits. We then set n to be a power of 2 larger
than 2N , so that our finite Fourier transform involves O(n log n) = O(N) operations, each of whichb
may be an operation on a (3 log2N)-bit number. If we use longhand multiplication and division
(taking O(b2) time) to do these operations, we get an O(N log2N)-time algorithm.

There’s no reason that we need to stop there. We could always use recursion and perform these
operations on the 3b-bit numbers using fast integer multiplication as well. If we use two levels of
recursion, we get an O(N logN(log logN)2) time algorithm. If we use three levels of recursion, we
get an O(N logN(log logN)(log log logN)2 time algorithm, and so forth.

It turns out, although we won’t go into the details, that you can get a O(N logN log logN)
time algorithm. The main difference from what we’ve done is that you choose the number you use

k
to do the FFT not of size around logN , but of a number of the form 22 + 1 of size around

√
N

(it actually doesn’t have to be prime). You then carefully compute the time taken by applying
k

this algorithm recursively, making sure that you use the fact that mod 22 + 1, multiplication by
small powers 2 can be accomplished fairly easily by just shifting bits. Details can be found in
Aho, Hopcroft and Ullman’s book “Design and Analysis of Computer Algorithms.” In fact, very
recently, still using the finite Fourier transform, Furer¨ found a way to speed up multiplication even
further so that the running time is only a tiny bit more than O(N logN).

FFT-9

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

