18.310 lecture notes September 2, 2013

Sequential Choice

Lecturer: Michel Goemans

1 A game

Consider the following game. I have 100 blank cards. I write down 100 different numbers on the
cards; I can choose any numbers I want, and you don’t get to see what numbers I choose. So e.g.,
I might choose

1,2, 10000000, 7r, —10000000, 101°'° 0.01, . . .

The deck of cards is then shuffled well, so that the cards are now in uniformly random order. The
deck is placed before you face down, and the top card is turned over to show a number (maybe it’s
1000000). You have two choices: you can say “stop”, and choose this card, or skip it. If you skip
it, the next card is turned over, so you can see the number, and again you may choose to stop and
choose the card, or go onto the next.

The game ends once you pick a card; you win if the card you pick was the largest of all the
cards. Note that the game would be very easy if you knew what numbers I wrote down; you’d just
keep skipping until you see the card with the largest number. But since you know nothing about
the numbers, it looks pretty hard...

It costs $10 to play; if you win, I'll give you $P. How big should P be before you're willing to
play?

Surprisingly, you should play even if P = 37! There is a strategy that wins with probability at
least 1/e = .367.... Let’s first see a simpler strategy and argument that wins with probability at
least 1/4.

Here’s the strategy: for the first 50 cards, always skip, no matter what the numbers are. After
that, stop whenever you see a card that is largest of all the cards you've seen so far.

Claim 1. If the largest card is in the 2nd half of the deck, and the second largest card is in the first
half of the deck, then you win.

Proof. After the first 50 cards are overturned, we have seen the second largest card. Thus we will
not stop until we see the largest card (which is in the second half of the deck, and so hasn’t been
skipped). O

Thus

Pr(win) > Pr(largest card in 2nd half) Pr(2nd largest card in 1st half | largest card in 2nd half)

_ 50 50
- 100 99
> 1/4.

Online-1

Note that our analysis was not completely tight; it’s possible to win even if the 2nd largest card is
not in the first half. For example, if the third largest card is in the first half, and the largest card
appears in the 2nd half but before the second largest card.

Now lets try to use the same idea, but optimize things. Let n be the number of cards (previously
n = 100, but no reason to restrict ourselves). Our strategy will be similar, but we will skip over
the first ¢ cards (previously, ¢ = 50), and from then on pick a card if it’s the largest we’ve seen so
far. Our goal will be to analyze this strategy precisely for a given k, and then determine the best
choice of k. Our primary interest will be for n large.

Theorem 1. The probability of winning with this strategy is

n

t 1
Pr(win) = —
r(win) - L
k=t+1
as m — 0o,
Pr(win) — ——1In(t/n)
Proof. O

Let’s split the event that we win based on the position of the largest card:

n

Pr(win) = Z Pr(pick k’th card, and k’th card is the largest)

k=t+1
n

= Z Pr(pick k’th card | k’th card is the largest) Pr(k’th card is the largest).
k=t-+1

Now Pr(k’th card is the largest) = 1/n, for any k. On the other hand, for k > ¢, the probability
that we pick the k’th card, conditioned on it being the largest, is simply the probability

Pr(pick k’th card | k’th card is the largest)
TODO

The probability that the largest card rank 1 choice being the j’th one we look at is 1/n. Given
that it is the j’th possibility we look at, the probability that we successfully choose it is simply
k/(j — 1), since we will choose it only if the best possibility among the first j — 1 is in the first k.
Summing on j, we get the success probability, given that we set our threshold to be k, is

"1k ke=l
imkr1 T sk

Now, we can use the fact that 2?21]l ~ Inn to approximate this sum

k
P~ —In(k/n).
k nn(/n)

Online-2

2 Introduction

There are times in life when you will be faced with the problem of choosing among a large number
alternatives, but you will be forced to decide which choice to make before seeing many or most of
them.

A typical situation is when you are looking for an apartment to rent in a market in which really
good apartments at reasonable prices are hard to find. Then, you typically examine potential
places one by one. And if the one you currently see is just right, unless you decide right away to
take it, somebody else will, and you will no longer have this choice available. This problem has
traditionally been called the secretary problem, and the story attached to it was of an executive
interviewing secretaries.

We give a mathematical model of this kind of situation by imagining that there are N alterna-
tives, which at the beginning are entirely unknown to you; you view them one at a time, and must
accept or reject each one immediately, without seeing any more.

In the first case, we consider the goal of finding the very best among these alternatives. We
could also seek to choose one of the best two, or to find a strategy to minimize the expected rank
of your choice among the N alternatives (where best is rank 1, next best rank 2, and so on,) or
make a choice that ranks among the top) percent of the possible choices.

We are going to assume that you examine the choices in an entirely random order, so that you
have no reason to believe that the unseen choices are better or worse than those you have already
seen. Thus, if you have seen and passed k candidates, we assume that the next one to come along
has an equal chance, or probability 1/(k+ 1), or lying in one of the k+ 1 intervals defined by the k
choices you have already seen. In practical situations, this assumption can be false, so you should
be cautious in applying the analysis below. For example, a classical strategy on the part of some
real estate agents (or nasty trick, from the buyer’s point of view) is to first show the buyer five or
six really bad houses, and then show them a reasonable house that (possibly) one of her friends
has listed. The buyers get an unrealistic sense of the quality of the houses on the market, and are
likely to be fooled and pick the last (and still average quality) house.

3 Seeking the very best out of n possibilities

In situations in which we must make a choice like this, many of us tend to use one of two quite
poor strategies. Either we loath the process of choosing so muech that we take the first possible
alternative, or we procrastinate at choosing until there is only one possibility left. With either of
these strategies, our chance of getting the best out of the n choices we could have seen is 1/n. We
can do much better.

How? Obviously, to do better we must examine the first possibility, and perhaps the next few,
merely to learn about available choices. At some point, or threshold, we must decide to accept
the next choice that is the best so far. If our goal is to accept only the best alternative, we must
certainly reject any that has worst rank than any we have seen before.

We can analyze this problem based on the assumption that the choices are randomly ordered
by merit, as follows. Suppose our threshold is the kth possibility, which means that we definitely
reject the first k£ choices we see and pick the next one that is the best so far. Then we definitely
lose if the rank 1 choice is among the first k& seen. Suppose that the rank 1 choice is among the last
n — k we look at. Then, we will reject it if and only if the best one we saw before we looked at the

Online-3

rank 1 choice is among the first k. If it is, then we would have passed on it, and since everything we
saw between it and the rank 1 choice is inferior to the next best, we would have waited for our rank
one choice. On the other hand, if the best choice before the rank 1 choice is after our threshold &,
we certainly would have taken it, and never reached the rank 1 choice.

We can write down a formula for our chance of success, given that our threshold is k. The
probability of our rank 1 choice being the j’th one we look at is 1/n. Given that it is the j’th
possibility we look at, the probability that we successfully choose it is simply k/(j — 1), since we
will choose it only if the best possibility among the first j — 1 is in the first k. Summing on j, we
get the success probability, given that we set our threshold to be k, is

n

1k g
P ey —_— = — —_
LAV | an

Now, we can use the fact that 2?21 % ~ Inn to approximate this sum

k
P. ~ —In(k/n).
k nn(/”>

If we differentiate this expression, we find that the maximum occurs when Ink/n =1, or k = n/e.
The value of the probability is then k/n = é, so if these approximations are reasonable, our
probability of getting the very best choice is around 1/e, which is roughly .37.

The results are: with n = 5, the best k value is 2, which means you let the first two candidates
go by and pick the next better one; k increases to 3 when n = 8, to 4 when n = 11, to 5 when
n = 13, to 6 when n = 16, and so on. The best value for k is usually the one nearest to n/e.

The probability of successfully choosing the best candidate is bigger than 1/e for small values
of n. Thus, for n = 8, choosing k = 3 gives a probability .4098 of success.

4 Calculating probabilities for choosing the very best on a spread-
sheet

Now, let’s look at how we might efficiently calculate the optimum value of the threshold on a
spreadsheet; the point after which we might possibly choose a candidate. If we are trying to choose
the very best candidate, then the formula in the previous section is fairly efficient to calculate in a
straightforward manner: for each of the n possible values of the threshold, we have a nice formula
for the probability of success. In fact, we don’t even need to check all n possible thresholds; just
the ones near n/e.

However, suppose we were trying to maximize the probability of choosing one of the best 10
candidates. The optimum strategy would then look like this: choose 10 thresholds ki, k2, ..., k10,
and if you are past the ¢’th threshold, choose the current candidate if it is one of the best ¢ you
have seen so far. Now, there are roughly nchoosel0 possible values for the 10 thresholds, and this
would make calculations quite inefficient if you had to test even a small fraction of these possible
values.

There is a clever way to get around this. This way works fairly well for any number of thresholds,
and also works for quite a few variations on this problem. What I will explain in these notes is how
to do it for the problem where your goal is to choosing the very best possibility, and I will assign

Online-4

some variation on this for homework. The idea is to work backwords from the last choice, and at
every point compute the probability of success, given that you haven’t chosen a candidate before
this step. We will let Py be the probability of success, given that we have let the first & candidates
go by. We will use the fact that this probability Py is independent of the candidates we have seen
so far.

If we reach the last possibility without having chosen earlier, we must choose the last, and the
probability that we win is % Thus, P, 1 = % Now, let’s calculate P,,_s. suppose that we reach
the second to last possible choice. If this choice is the best one we’ve seen so far, we should choose
it. The probability that the next to last is the best one we’ve seen so far is ﬁ, and the probability

that we win if we choose it is the probability that the last choice is not the optimal one, which is
"771. Now, if it’s not best so far (with probability Z—j, we let it go by, and our chance of winning

is P,_1 = % We have to let it go by, and if we do, our probability of winning is P,_1 = % Thus,
we get,
P, = Pr(next —to — last is best so far) - Pr(next — to — last is optimal | best so far)

+ Pr(next to last is not best so far) - P,,_;
1 n—-1 n-21
l’

n—1 n n—1n
B 2n — 3
 nn-—1)

Now, suppose that we know P, and want to calculate P,_;. First, let’s assume that we are
past the threshold. Then we have

P,y = Pr(kth is best so far) - Pr(kth is optimal | best so far)
+ Pr(kth is not best so far) - Py.

We know the probability that the kth guy is the best so far is just %, and the probability that it’s
not best so far is k—;l, so the only probability we have to calculate to make this recursion work is
the probability that the kth guy is optimal, given that it’s the best so far. I think the easiest way
to to think about this is to realize that the two events F4 and Ep are independent, where F 4 is
the event that the the kth candidate is the best of the first & candidates, and Ep is the event that
the optimal candidate is among the first k. Then, it’s easy to check that the probability that we
want to calculate is Pr(Ep|FE4). Since these two events are independent, this probability is just
Pr(Ep) = % T’ve left out a few details here, but you should have learned enough about probability
earlier in this course to fill them in fairly easily.

Now, we can compute the probability of winning, given we choose k as the threshold recursively,
as follows

P,y = Pr(kth is best so far) - Pr(kth is optimal | best so far)
+ Pr(kth is not best so far) - Py
1k k-1
= —— Py.
kn kO

It’s fairly easy to check that this gives the same formula for P, we saw earlier. But why is this more
efficient? One reason is that this lets us compute all the P.’s at once, and then we merely need take

Online-5

the maximum of them. In fact, it becomes very easy to find the maximum because, starting with
k = n, we can show that P, increases at first, and then decreases, obtaining a maximum around
k~nje.

However, there’s another thing we can do with this formula which generalizes more easily to
other problems. Let’s change the formula slightly. Let @ be the probability of winning with the
optimal strategy, given that we have already let the first k& choices go by. Then we have, by the
same reasoning that gave us the formula for Py,

Qr—1 = Pr(kth is best so far) - Pr(optimal strategy | kth is best so far)
+ Pr(kth is not best so far) - Qx

But what is the optimal strategy if the kth item is best so far? It is either to choose the kth item or
pass on it, depending on which gives you a larger probability of success. The probability of success
if we choose the kth item is just %, and the probability of success if we pass on it is Q. Thus, we
have the formula

k

Now, how do we generalize this to the problem where we want to find one of the top L items. We
can write down a similar formula for p_1. For each k, and for ¢ going from 1 to L, we have to
calculate the probability of success if we choose the k’th item, given that the k’th item is the ¢’th
best so far. Then, if the k’th item is the i’th best so far, we choose it only if this gives us a higher
probability of winning than Q.

1 k E—1
Qr—1 = ~ max <, Qk) + —Q%-
n k

5 Seeking one of the top two (or top L) choices.

The problem of finding the best strategy when you lower your standards and consider yourself
successful if you choose on of the top two choices or one of the top L choices can be addressed just
as the previous problem, but we have to consider the possibility of having more than one threshold.

Suppose we seek the best or second best. After the first threshold we accept the best candidate
so far, and after the second threshold we take either the best or second best that comes along.
When we seek to get one of the top L, we similarly want to consider L different thresholds.

The calculations are somewhat more complicated, and we leave the details for you. The results
are: for L = 2 and small values of n, we can achieve a probability of success above 0.6. As n
increases, our chance of success dwindles down to around 0.57.

6 Seeking the Best Expected Rank

This problem can also be handled by the same general approach. If there are n possible choices all
together, we can compute a threshold for each stage, where we accept a candidate in some stage if
its rank is less than than or equal to the threshold for that stage. Call this threshold T'(s), where
s is the number of candidates still unseen.

When s = 1, there is only one candidate left after the one you are currently examining. We
will be stuck with the rank of the final candidate if we pass on the current choice. This last choice
has expected rank (n+ 1)/2. Suppose the candidate we are looking at at this point has rank r out
of the n — 1 we have seen so far. We can deduce that it therefore has expected rank r(n + 1)/n

Online-6

among all n cndidates, so that we should accept it if r(n + 1)/n is better than (n + 1)/2. we get
this by noticing that with probability r/n the last candidate raises our rank by 1 above its present
value of 7.

Let us assume that goodness means low rank, so that rank 1 is best. Then our expected rank,
before the (n — 1)st cgiuce us (n + 1)/4 if we choose the n — 1st, and (n + 1)/2 if we don’t do so.
We have a roughly 50-50 chance of doing either, so our threshold for the (n —2)nd choice is roughly
3(n + 1)/8. A similar computation can be made to deduce the expected rank before seeing the
(n—2)nd if we have passed over the previous choices. This determines a threshold for our (n— 3)rd
choice, and we can continue back to the beginning.

Though this sounces somewhat complicated, it isn’t, and it is very easy for a machine to
determine the expected rank at the beginning for any reasonable n. The result is quite surprising.
It turns out that the expected rank at the beginning is always less than 4, independent of n.

The best strategy appears to be roughly as follows. We let the first quarter of the choices go
by. Then we take only the best until the next quarter of what is left, i.e., choosing the best in the
next (1/4)(3/4)n candidates, and so on. (Don’t count on this. Figure it out for yourself.) So if you
want to get an expected rank better than the 4th best, you can do so even if there are a billion
candidates. Of course, you have to examine almost a billion of them to do this, which is probably
ridiculously impractical.

Online-7

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

