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 Rodolfo R. Rosales

April 5, 2014.  

Problem Set # 05. Due: Tuesday April 15. 

IMPORTANT: 
— Turn in the regular and the special problems stapled in two SEPARATE packages. 
— Print your name in each page of your answers. 
— In page one of each package print the names of the other members of your group. 
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1 Regular Problems. 

1.1 Statement: Haberman problem 77.06. 

Consider Burger’s equation, as derived in exercise 77.5:  
2 ρ 

ρt + umax 1 − 
 

ρx = ν ρxx. (1.1)
ρmax

Suppose that a solution exists as a density wave, moving without change of shape at velocity V  

ρ = f(x − V t).	 (1.2) 
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(a)	 What O.D.E. is satisfied by f? 

(b)	 Integrate this differential equation once. By graphical techniques show that a solution exists, 
such that ρ → ρ2 as x →∞ and ρ → ρ1 as x → −∞, only if ρ2 > ρ1. Roughly sketch this 
solution, and give a physical interpretation of this result. 

(c)	 Show that the velocity of wave propagation, V , is the same as the shock velocity separating 
ρ = ρ1 from ρ = ρ2 (occurring if ν = 0). 

1.2 Statement: Ideal gases thermodynamics. 

Consider a gas in a container, at equilibrium. The gas can then be described in terms of the thermo­

dynamic variables: ρ (density), v = 1/ρ (specific volume), p (pressure), T (absolute temperature), 
e (internal energy per unit mass), S (entropy), etc. These quantities are not independent, in fact: 
given any two of them, the others follow via equations of state. In particular, e is a function of T 

e = e(T )	 (1.3) 

and 
T dS = de + p dv. (1.4) 

Note that the second law of thermodynamics states  that dS ≥ 0 for any allowed physical process.1

In particular, for an ideal gas 
p v = Rs T , (1.5) 

where Rs > 0 is the specific gas constant. A polytropic gas is an ideal gas such that 

e = cv T ,	 (1.6) 

where cv > 0 is a constant — the specific heat at constant volume. In addition, we introduce 
cp

cp = Rs + cv and γ = , (1.7) 
cv 

where cp is the specific heat at constant pressure and γ is the ratio of specific heats — which generally 
satisfies 1 < γ < 2.  Note that h = e + p v (the enthalpy) satisfies 2

T dS = dh − v dp and h = cp T .	 (1.8) 

These are the tasks for this problem: Assume a polytropic gas, and 
1 Equation (1.4) indicates that the temperature is an integrating factor for any “work” done on the system 

δw = de + p dv. This generalizes to more complicated systems. For example, in the presence of chemical reactions: 
T dS = de + p dv −

 
n µ dC , where the C are the concentrations and the  n n    n      µn are the chemical potentials. 

2 The names for c δw δw 
v and cp follow because δT =  cv if v is kept constant, while = cp if p is kept constant.δT   
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1.	 Write the internal energy in terms of the pressure and the specific volume: e = e(p, v). 

2.	 Write the entropy in terms of the pressure and the specific volume: S = S(p, v). 

Equation (1.4) determines S up to a constant. Let S0 be the value of the 
entropy for p = p0 and v = v0. This determines the constant. Warning: 
your answer should not involve things like the logarithm of a volume —  
only the log of a number makes sense!  

3. Write the pressure in terms of the entropy and the specific volume: p = p(S, v). 

4. Write the internal energy in terms of the entropy and the specific volume: e = e(S, v). 

5. Write the temperature in terms of the entropy and the specific volume: T = T (S, v). 

1.3	 Statement for problem GaDy03. 
Rankine Hugoniot conditions for Isentropic Gas Dynamics. 

The one dimensional isentropic (constant entropy) Euler equations of Gas Dynamics are given by 

ρt + (ρ u)x = 0, 
(1.9) (ρ u)t + (ρ u2 + p)x = 0,

 

where ρ = ρ(x, t), u = u(x, t), and p = p(x, t) are the gas mass density, flow velocity, and pressure, 
respectively. The first equation implements the conservation of mass, and the second the conser­

vation of momentum. These equations are complemented by an equation of state, relating the 
pressure to the density. This takes the form 

dP 
p = P (ρ), where P is a function satisfying > 0.	 (1.10)

dρ 

For example, for an ideal gas P = κργ , where κ > 0 and 1 < γ < 2 are constants. 

Use conservation to derive the Rankine-Hugoniot jump conditions that shocks for the equa­

tions above must satisfy. In other words, consider a solution of the equations of the form 

ρ = ρL and u = uL for x < s t, 
(1.11)

ρ = ρR and u = uR for x > s t,

 

where	 ρL > 0, ρR > 0, uL, uR, and s are constants. Then find conditions that these constants 
have to satisfy so that mass and momentum are conserved.  

Hint 1: In a frame of reference moving with the shock, the fluxes of mass and momentum on each  
side of the shock must be equal.  

Hint 2: Alternatively: use the integral form of the conservation laws across an interval containing  
the shock; i.e.: a < s t < b.  
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Remark 1.1 One may question whether it makes sense to consider shock wave solutions within 
 the context of the constant entropy assumption.3 However, it can be shown (though we will not do 

it here) that the amount of entropy produced within a shock is proportional to the cube of the shock 
strength for weak shocks. Hence, as long as we use the equations in situations where only weak shocks 
arise, it does make sense to consider shocks within the context of a constant entropy assumption. 

2 Special Problems. 

2.1 Introduction: Eikonal equation. 

Consider situations like the ones described in the examples below 
A.	 Imagine a wave-front of some sort, propagating into a medium. For example, a combustion 

front, across which some chemical reactions in a solid combustible media are taking place. 
Then the fresh (unburnt) media is ahead of the front, and the burnt media is behind it. 

If the chemical reactions happen fast enough, it is reasonable to approximate the burning 
region as infinitely thin, and model the front by a surface moving in space. This surface, and 
its evolution in time, can then be described by a function Φ = Φ(r) such that the level surface 

Φ(r) = t	 (2.12) 

is the wave-front at time t. Notation: here r is the position vector in space. Thus, in 2-D 
r = (x, y), and in 3-D r = (x, y, z).  

Of course, in order for this description to be useful, we need some equation for Φ, so that (for  
example) given that we know the position of the wave-front at some time t0 (that is, we know  
the level surface Φ(r) = t0), we can predict it for future times. We do this next.  

If the media is isotropic, it is reasonable to assume that, at each point in space, the wave-front 
propagates normal to itself at some known velocity c = c(r) > 0, which we can either get by 
direct measurement or (in principle, at least) from an analysis of the detailed physics at the 
burning front. With this assumption, it can be shown that the phase function satisfies the 

Eikonal equation: (c VΦ)2 = 1.	 (2.13) 

Note: We have assumed here the simplest of situations, where the speed of propagation de­

pends only on the properties of the unburnt media ahead of the front (so that c = c(r)). More 
complicated situations can arise, where the speed of propagation depends also on other factors 

3Constant entropy presumes adiabatic conditions, while changes at a shock are anything but slow. Hence shocks 
must produce entropy. 

4  

vver14
Line



(such as the local curvature of the front), or other variables (such as the local temperature) 
for which extra equations are needed. 

B.	 Another circumstance under which the Eikonal equation (2.13) arises is the one where high 
frequency waves (say, light or sound) propagate into some media. The idea is as follows: 
suppose that the governing equation is the wave equation 

utt = div(c 2Vu) , where c = c(r) > 0.	 (2.14) 

Consider now a stationary wave situation, where the field u is vibrating everywhere with the 
same frequency, and all the wave-fronts move along the same path (think of the light coming 
from some source, which does not change in time, nor moves, and is illuminating a region of 
space where nothing moves or changes either). If the wave-length is short enough, then near 
each point in space (and time) the wave-fronts will be nearly plane and will move normal to 
themselves at speed c. In this case, if we (again) introduce a phase function Φ to describe 
the wave-fronts, equation (2.13) will apply. 

Notice that in this second situation there is not a single wave-front, but many (the light source 
emits as many wave-fronts per unit of time as its frequency). However, all the wave-fronts 
behave in the same way, taking the same sequence of positions in time (with only a time 
delay differentiating one wave-front from the other). That is, the wave-fronts are given by the 
equation 

Φ(r) = t + ζ ,	 (2.15) 

where ζ is the time delay. 

Remark 2.2 The situation described in B above is the mathematical formulation of the idea that 
light (or high frequency sound waves) propagates along rays (which are straight on an homogeneous 
media, and curved otherwise). The Eikonal equation can be written in terms of characteristics (see 
Part II below), with the characteristics giving the rays along which light propagates. 
Furthermore, it can be shown (though we will not do this here) that the energy is carried along 
characteristics. Thus, when the rays diverge, the energy density (light intensity) in the waves goes 
down. Similarly, the light intensity goes up when the rays converge. In particular, when the rays 
cross, an infinite energy density is predicted. Of course, we cannot take this at face value (since 
when rays cross, the wavefronts develop infinite curvature, and the approximations made in deriving 
the Eikonal equation break down). Nevertheless, it is still true that the energy density becomes large 
at the locations where the rays cross. 
The envelope of the rays (see Part II below) for the Eikonal equation is thus very important, since 
it gives the location in space where we should expect to find large wave amplitudes. It is very easy to 
locate these places when dealing with light, since they correspond to very bright curves and surfaces 
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in space; known as caustics. You can easily see caustics if you put a glass filled with water, on a 
white surface, under a bright light. 

2.2 Statement: Eikonal equation (part 1). 

Derive the Eikonal equation (2.13) to describe the situation where a moving surface, given by 
Φ(r) = t, moves at speed c = c(r) (normal to itself) at each point in space. 

Hint 2.1 Consider the wave-front at time t, and let n̂ be the unit normal to the wave–front at any 
place along it (pointing into the direction of propagation.4) Then because the wave-front propagates 
normal to itself at velocity c, it should be that: 

r is in the wave-front at time t if and only if r + n̂ c dt is in the wave–front at time t + dt. 

In other words 
Φ(r) = t ⇐⇒ Φ(r + n̂ c dt) = t + dt. (2.16) 

2.3 Statement: Eikonal equation (part 2). 

Consider the case of an homogeneous two dimensional media, where the speed of propagation c is 
a constant. In this case we can choose non-dimensional variables so that c ≡ 1 and the Eikonal 
equation reduces to 

(VΦ)2 = 1, (2.17) 

where Φ = Φ(x, y) and the wavefronts are the curves Φ(x, y) = constant. This last equation has a 
characteristic form, given by: 

dr dk dΦ 
= k and = 0, along which = 1. (2.18)

dt dt dt 

Here r = (x, y) is the position vector in space and k = VΦ is the wavenumber vector, which is 
normal to the wavefronts and (from (2.17)) also a unit vector. A solution of the Eikonal equation 
is determined once we give a wavefront, which can then be used to provide initial values for these 
characteristic equations.  

The curves in space r = r(t) — given by the solution of 
JARGON:

the characteristic equations (2.18) — are are called rays. 

Consider now the  situation where the wave front Φ = 0 is the parabola y = x 2. Then 
(a) Compute the characteristics for this situation. 

4You can easily get n̂ from VΦ. 
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(b) Consider the family of curves in space given by the rays just computed as part of doing 
item (a). Find the envelope of this family and express it in the form y = y(x). 

(c) Plot the envelope computed in part (b). 

Note that this problem has relatively simple algebra and you should not have big hassles with it, 
provided you are careful, organized, and keep your notation straight. 

SOME HINTS AND NOTATION: 
The initial wavefront Φ = 0 can be described by the parametric equations x = s and y = s 2, where 
−∞ < s < ∞ is the parameter. The unit tangent and unit normals to this curve are  (

1 2s −2s 1
t̂ = √ , 

1 + 4s2 
√ 

 )
and n̂ = 

 (
√ ,  . (2.19)

1 + 4s2 1 + 4s2 
√

1 + 4s2 

 )

Then for each s we have a characteristic, where the formula for n̂ defines the initial value for k. 

After you solve the characteristic equations, you will end up with formulas for the rays of the 
form x = x(s, t) and y = y(s, t), where each s defines and individual ray. The rays are given 
parametrically, with t the parameter along each ray. You should find it rather easy to eliminate 
the parameter t from the formula for the rays, so that you can write the ray labeled by s as the 
solution to an equation of the form 

F (x, y, s) = 0. (2.20) 

Once you do this, you’ll have the standard form used to compute envelopes. From this, getting 
the envelope in the form x = x(s) and y = y(s) is rather straightforward. Eliminating s from these 
two last expressions should now be easy, and it will give you the requested form y = y(x) for the 
envelope. This will end up being a rather simple formula, that you can plot without trouble. 

THE END.  
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