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2 18.311 MIT, (Rosales)	 Introduction: von Neumann Stability Analysis. 

1	 Introduction. 
von Neumann Stability Analysis for Numerical Schemes. 
Important: This first section is a theory section, covering and supplementing the lectures. 
The actual problem set problems are in the other sections. However, you will need to (at 
least) check § 1.3 here, where the instructions of what to do in the problems are included. 

A von Neumann stability analysis can be carried out for constant coefficients linear finite differences 
schemes only. It is based on the fact that (for this class of schemes) the general solution to the 
scheme equations can be found as a linear combination of the special solutions found by separation 
of variables. This works because: 

A.	 For linear schemes, linear combination of solutions are solutions. 

B.	 If the scheme coefficients are constant (independent of the indexes), exponential and power 
dependencies on the indexes factor out, leaving algebraic equations for the parameters. 

These are the same reasons that allow the solution of linear constant coefficients differential equa­

tions using exponential functions. 

The limitation to constant coefficients linear equations is not as restrictive as it might seem. One 
can often get information on the behavior of schemes where these conditions do not apply (e.g: 
either non-linear or non-constant coefficients situations) by doing a von Neumann stability analysis 
on a “frozen” coefficients version of the schemes (this can be tricky, so we will not go into this now). 

Note 1.1 For a more mathematically rigorous presentation of the meaning of consistency and 
stability for numerical schemes, see the section on Convergence of numerical schemes in Various 
lecture notes for 18311. The presentation here is at an informal level. ♣ 

1.1 Example: the “good” scheme from the lectures. 
Here we show an example of a von Neumann stability analysis, to illustrate the idea. We pick 
the “good” scheme used in the GBNS lecture script in the 18.311  Toolkit. The aim of this 
scheme is to solve the wave equation, written as the system of equations: 

ut = v and vt = ux x,	 (1.1) 

where the subscripts indicate partial derivatives and the equations are written using nondimensional 
variables (thus the wave speed is c = 1). 

Description of the scheme. 

Consider a uniform grid in space and time {(xn, tm)}, with grid spacings Δx and Δt (assumed 
“small”). That is xn+1 = xn + Δx and tm+1 = tm + Δt. On this grid we assume that the solution 
is approximated by the grid functions u mn and vn

m . That is: 

m	 m u(xn, tm) ≈ un and v(xn, tm) ≈ vn ,	 (1.2) 
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where the grid functions satisfy the following discretized version of equations (1.1) (the “good” 
numerical scheme): 

u − 2u + u+1 −1 
m
n

m
n

m
n

m+1 m
n− u 1 u mn +  δ Δt  ,  (1.3) = v n (Δx)2Δt  2  

m+1 m
nu − 2u + u v − 2v + v+1 −1 +1 −1 

m
n

where δ > 1 is a constant (for δ = 2 this is the “good” scheme in the GBNS lecture script script of 

m
n

the 18.311  Toolkit). The reason for the condition δ > 1 is stability, as shown below. 

Equations (1.3 –1.4) are obtained by adding a small amount of numerical viscosity 1 to the intuitive 
(but naive) discretization used in the “bad” scheme of the GBNS lecture script in the 18.311

Toolkit. Namely: 

m
n

m
n

m
n

m
n− v 1 v n δ Δt  (1.4) + =  , 

(Δx)2 (Δx)2Δt  2  

m+1 m+1 m
n

m
n

m
nu − 2u + u+1 −1 

Normal modes for the scheme. 

m iκn m iκnWe look now for solutions of the form u n = U Gm e and v n = V Gm e , (1.6) 
for the scheme equations in (1.3 – 1.4). Here U and V are constants, G is the growth factor and 
−π < κ ≤ π is the grid wave number. 

Remark 1.1 The restriction −π < κ ≤ π follows because the terms e iκn — above, in (1.6) — 
are periodic in κ, of period 2π. Thus there is no point in using values of κ outside of a 2π range 
— though, some times it is convenient to restrict the range by 0 ≤ κ < 2 π.  
Note that, for κ = p/q a rational number, the solution above is periodic, of period q in n. ♣  

Substituting (1.6) into (1.3 – 1.4), we obtain the equations: 

m
n 

m
n− u − v u v n nm

n and  (1.5) = v  =  .  
(Δx)2Δt  Δt  

  
GU = 1 − 2 δ λ2 sin2(κ/2) U + Δt V , 

⎫ ⎪⎪⎬ 
(1.7)   4 λ2 

sin2(κ/2) U 
⎪⎪⎭1 − 2 δ λ2 sin2(κ/2)GV = −  V , + 

Δt 

Δt 
iκ − 2 + e −iκ = −4 sin(κ/2).where λ = , and we have used that e 

Δx 
This is an eigenvalue problem, with eigenvalue G given by  

G = 1 − 2 δ λ2 sin2(κ/2) ± 2 i λ sin(κ/2). (1.8)    2 
|G|2 = 1 − 2 δ λ2 sin2(κ/2) + 4 λ2 sin2(κ/2)In particular  

= 1 − 4 (δ − 1) sin2(κ/2) λ2 + 4 δ2 sin4(κ/2) λ4 . (1.9) 
1 For a motivation, see the introduction to the AENS (Associated Equation to a Numerical Scheme) set of problems. 

Equations (1.3 –1.4) mimic the system ut = v + 1 δ
2

 Δt ux x and vt = ux x + 1 δ
2

 Δt vx x.   
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The general solution to the scheme equations (1.3 – 1.4) can be written as a linear combination of the 
normal modes (1.6 – 1.8). In order for the scheme to behave appropriately, none of these modes 
should grow (otherwise numerical errors are amplified). Thus we need |G| ≤ 1, which leads to 

Stability conditions are conditions that guarantee |G| ≤ 1 for all κ. (1.10) 

As we show below — see (1.14) — this is possible provided that λ and δ are restricted appropriately. 
In fact, we want more (consistency): 

The restrictions for stability should allow Δt → 0, Δx → 0, and δ Δt → 0 
(1.11)

— so that the scheme equations in (1.3 – 1.4) approach the pde in (1.1). 

This is also allowed by (1.14). 

Implementation of the stability condition (1.10). 

For any fixed κ, (1.9) expresses |G|2 as a a quadratic polynomial in λ2 . It follows that |G|2 ≤ 1 if 
and only if 2 

δ − 1 
δ > 1 and λ2 ≤ . (1.12)

δ2 sin2(κ/2) 
Thus the stability conditions for the scheme in (1.3 – 1.4), obtained by requiring that (1.12) hold 
for all the possible values of κ, are: δ > 1 and λ2 ≤ (δ − 1)/δ2 . However (see note 1.3) 

It is always a good idea to have any “high frequency” (grid scale)  
oscillations, killed by the algorithm. This means that we want (1.13)  
|G| < 1 for κ away from zero, and particularly near κ = π.  

Thus, finally, we arrive at the stability conditions: 
√ 

δ − 1 
δ > 1 and λ < , which yield |G| < 1 for κ  (1.14)= 0. 

δ 

Of course, G(0) = 1, so that |G(0)| = 1. 

Note 1.2 It is, generally, desirable for a numerical scheme to preserve the equilibrium solutions 
for the equation. In this case this means that we want u mn = constant and vn

m = 0 to be solutions of 
the scheme. This requirement forces G(0) = 1, and it is not guaranteed by consistency. ♣ 

Note 1.3 Generally, a situation where |G| ≡ 1 is not desirable, unless G = Ge = exact growth 
factor 3 — for more on Ge, see § 1.1.2. 
The reason is that then modes with κ away from zero (“high frequencies”) will be evolved incorrectly, 
without being killed. For solutions with a substantial amount of high frequencies (e.g.: the initial 
conditions have discontinuities or singularities of some type) this leads to oscillations that appear 
in the numerical solution, as the modes loose coherence. An example of this is provided in problems 
vNSA01h and vNSA04h (Crank-Nicolson scheme for ut ± ux = 0). 

2 Assume λ > 0, since λ = 0 is useless. Then note that: (i) δ ≤ 1 yields |G2| > 1 in (1.9). (ii) For δ > 1 the polynomial 
in (1.9) is below 1 for small λ2, and crosses above 1 for λ2 > (δ − 1)/(δ2 sin2(κ/2)). 

3 Of course, G = Ge is something that can only be achieved for very simple equations, such as ut + ux = 0. 
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1.1.1 Further considerations regarding stability. 

The restriction |G| ≤ 1 for all κ in (1.10) is a bit of an over-kill in terms of stability, though for the 
equation in (1.1) this is fine — even desirable, as demonstrated by (1.13 – 1.14). However, there 
are situations where one cannot use (1.10), as explained in item (c) below. Let us now examine the 
issue of stability in more detail. 

(a) Consistency (see § 1.1.2) guarantees that the normal modes with small grid number κ = O(Δx) 
are treated correctly by the scheme.4 It is the normal modes with κ away from zero that must 
be kept under control (no growth), since for these modes the scheme cannot be accurate: 
Finite differences are not accurate approximations of the partial derivatives for functions that vary 
too rapidly relative to the grid scales Δx and Δt. 

(b) A less restrictive, but technically more complicated, definition of stability 5 is that the solu­

tions provided by the numerical scheme (for fixed initial conditions) should remain bounded 
on any fixed time interval 0 ≤ tm ≤ T , as Δt → 0. In terms of the growth factor G, this 
translates to 

|G|m ≤ f(tm) for all m, Δt and κ, (1.15) 

where f = f(t) is a continuous function which does not depend on neither Δt or Δx. Clearly 
(1.10) is the special example of this corresponding to the simple choice f ≡ 1. See item (c) 
for another example. 

Typically G is a function of κ, Δx, Δt, and any parameters in the scheme (such as δ in the 
current case). In order to prevent errors in the calculation from growing, it is necessary that 
|G| ≤ 1 apply — or, more generally, (1.15). 

If (with suitable restrictions on the scheme parameters, Δx, and 
(1.16)

Δt) this can be achieved, then we say that the scheme is stable. 

A scheme will be useful if we can do this, while simultaneously letting the scheme equations 
become better and better approximations to the equations that we want to solve (consistency 
can be implemented). This requires that the stability restrictions allow Δx and Δt to vanish, 
but may also impose restrictions on the scheme parameters — e.g.: δ Δt → 0 in (1.11). 

For some schemes, such as the ”bad” scheme of the GBNS lecture script in the 18.311  
Toolkit, (1.16) is impossible. Such schemes are called unstable. An unstable scheme is useless, 
because it cannot keep the errors under control, which grow till they overwhelm the solution. 

(c) When the solutions of the pde the scheme aims to solve are bounded — e.g.: (1.1), then it is 
reasonable to require |G| ≤ 1 for stability, as in (1.10). However, when this is not true, the 
definition in (1.15 – 1.16) must be used. 

For example, consider the equation ut + ux = u. In this case the solutions, u = e t f(x − t), 
grow exponentially. Hence a restriction of the form |G| ≤ 1 would be unreasonable for a 

i κ n i α (xn−x0) m m4 For κ = α Δx, e = e . Thus u and v in (1.6) follow from smooth functions of x evaluated on the n n 
grid, for which approximating derivatives via finite differences makes sense. 

5 See the section on Convergence of numerical schemes in Various lecture notes for 18311. 
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numerical scheme. The appropriate thing here is to require (1.15) with f an exponential, 
which occurs if we require 

|G| ≤ 1 + a Δt, for some constant a > 0. (1.17) 

m a Δt a tmThis guarantees (1.15), because ln(1 + a Δt) ≤ a Δt, so that |G|m ≤ e = e . 

A final point regarding the example in item (c) above: it may seem that allowing the errors to grow 
like e a t, with (possibly) a > 1 would create a problem when the solution itself grows at a rate e t . 
This is true, however, only if we want to calculate the solution for a very long time.6 For a “finite” 
time, since the errors “start” small, this is not a show-stopper for convergence. Nevertheless, it 
is always desirable — see (1.13) — to have the values of κ away from zero (particularly the high 
frequencies) killed, since these cannot be computed accurately by the scheme (any scheme). 

1.1.2 von Neumann normal modes and consistency. 

For a constant coefficients linear pde, a Fourier mode in space (i.e.: space dependence via an 
exponential e i k x) has an associated time dependence of the form eµ t, where µ = µ(k) is a function 
of the wave number k — when µ = −i ω is purely imaginary, ω is called the wave frequency. 
When these Fourier modes are evaluated on the numerical grid, as in equation (1.2), they give rise 
to a dependence on the grid indexes of the form 

m i κ n un ∝ exp(i k xn + µ tm) ∝ exp(i k Δx n + µ Δt m) = (Ge)
m e , (1.18) 

µ Δtwhere κ = k Δx and Ge = e . This has the same form as the dependence in equation (1.6), with 
the numerical G replaced by the exact Ge. For the the numerical solution to approximate the actual 
solution of the pde, it must be that (this is what consistency means) 

Ge and G are close to each other when Δt and Δx are small. (1.19) 

To be more precise, in general G is a function of κ, Δx, Δt, and whatever parameters the scheme 
equations include. That is G = G(κ, Δt, Δx, parameters). Then what is needed is 

G(κ, Δt, Δx, parameters) = 1 + µ(k) Δt + E Δt, (1.20) 

where t → 0 as Δx and Δt vanish, with k fixed and κ = k Δx. 

µ t tRemark 1.2 (1.20) is precisely what is needed to get Gm → e as m →∞, with Δt = 
m . Thus 

the scheme solutions converge to the true solution, provided that the scheme is stable — where stable 
means that the high frequency # contributions can be neglected. ♣ 
#That is, contributions from values of κ which are not O(Δx), as assumed in (1.20)). 

6 Which is, generally, not easy to do accurately — particularly if the solutions grow in amplitude. 
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Let us check (1.20) for the case of (1.8). Here µ = ±i k so that: 

Ge = exp(±i k Δt) 

= 1 ± i k Δt − 
1 

k2 (Δt)2 = 
1 

i k3(Δt)3 + O (Δt)4 , (1.21)
2   6   

G = 1 − 2 δ λ2 sin2 kΔx ± 2 i λ sin
kΔx 

2 2

= 1 ± i k Δt − 
1 
2 

δ k2 (Δt)2 = i 
1 
24 

k3 (Δt)(Δx)2 + O (Δt)2(Δx)2 , (Δt)(Δx)4 . (1.22) 

It is then clear that t above in (1.20) satisfies 

t = O Δt, (Δx)2 , i.e.: the scheme is consistent. (1.23) 

Notice that, by taking δ = 1, we can have agreement of the first three terms in the expansions for 
Ge and G above in (1.21 – 1.22), not just the first two. This makes the scheme higher order (thus, in 
principle, more accurate). Unfortunately, it also makes it unstable — as can be seen from equation 
(1.9), which shows that |G| > 1 for all λ = 0 and κ = 0. 

1.1.3 The CFL (Courant-Friedrichs-Lewy) condition. 

A necessary condition, that all convergent schemes must satisfy, is the CFL condition: The nu­
merical domain of dependence must include the p.d.e. domain of dependence. 
The reason why this is needed should be obvious: a numerical scheme cannot possibly compute the 
correct solution (converge) if it does not have access to the data that determines the solution. This 
conditions says that a numerical scheme must respect the speeds for information transport in the 
physical problem. 

For explicit schemes and hyperbolic problems (with finite speeds of propagation) the CFL condition 
translates into limits on the time step of the form Δt ≤ c Δx, where c is related to the maximum 
propagation speed in the problem, and the shape of the scheme stencil. 

For explicit schemes in problems with infinite speeds of propagation (e.g.: the heat equation) 
restrictions on the time step, of the form Δt ≤ c (Δx)p — where p > 1 — are needed. This tends 
to make explicit schemes not very efficient, as it forces very small time steps (even if not needed for 
accuracy). 

1.2 Example: implicit forward differences for ut + ux = 0. 
The aim is to solve the equation 

ut + ux = 0. (1.24) 

To do so we replace the equation by the following finite difference approximation 

m+1 m m+1 m+1u − u u − un n n+1 n+ = 0, (1.25)
Δt Δx 

( )

( )

( )

6 6
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where we use the same notation introduced in (1.2). Expand the solution to the equation as follows  

m	 m+1un = u(xn, tm+1 − Δt) = un − Δt ut + O((Δt)2), 
m+1	 m+1u = u(xn + Δx, tm+1) = u + Δx ux + O((Δx)2),n+1	 n 

where ut and ux are evaluated at (xn, tm+1). Substituting this into (1.25) shows that it approximates 
the equation with an error O(Δx, Δt). Hence, (1.25) gives rise to the consistent scheme 

m+1	 m(1 − λ) u + λ um+1 = u , where λ =
Δt

> 0. (1.26)n n+1 n Δx 

But, can λ be selected so that the scheme is stable ? We investigate this question below. 

Remark 1.3 Note that (1.26) is consistent precisely because of (1.25). That is: the scheme is 
equivalent to a finite differences approximation to the equation. The order of the scheme is given 
by the order of the errors in this approximation — in this case first order in both space and time. 
The order of a scheme characterizes the size of the errors that computing with the scheme produces 
(how good the solution is) — as long as the scheme is stable. ♣ 

Remark 1.4 Note that this scheme is implicit. That is, to find the solution at time tm+1 a 
system of (in this case linear) equations has to be solved. There is no expression that gives, directly, 

m+1 m un in terms of un . Implicit schemes are more expensive (per time step) to implement than explicit 
schemes. On the other hand, they tend to have better stability properties — they allow larger time 
steps than explicit schemes (in some cases much, much, larger). See § 1.1.3. ♣ 

To perform a von Neumann stability analysis, we now look for solutions to the scheme of the 
m iκnform u n = Gm e , where G is a constant to be found and −π ≤ κ ≤ π is the grid wave number. 

Substituting this into the scheme equation, we find 1 − λ + λ eiκ G = 1. Thus 

1 
G = .	 (1.27)

1 − λ + λ ei κ 

Note that 1/G lies on a circle of radius λ in the complex plane, centered at 1 − λ. This circle has 
to be outside the unit circle for G to be inside it. Hence all values of G fall inside the unit disk 
provided that λ > 1. We conclude that 

The scheme is stable provided λ > λc = 1.	 (1.28) 

Now notice: 

1.	 For κ = 0, G = 1. See note 1.2. 

2.	 This scheme is a little unusual, in the sense that the stability requirement is that Δt should 
be “large” enough — instead of the more common Δt “small” enough. Nevertheless, this is 
not a problem, as it is still possible to let both Δt and Δx vanish, while satisfying (1.28). 
This is all that is needed in order to get a convergent scheme. 

( )



9 18.311 MIT, (Rosales)	 Introduction: von Neumann Stability Analysis. 

3.	 Note that, for λ = 1 (i.e.: Δt = Δx) the scheme is exact: in this case (1.26) is explicit, and 
it reproduces the fact that the general solution to (1.24) has the form u = f(x − t), for some 

−i κ function f . In this case G = e . 

However, we have excluded this case from (1.28) based on the general principle that we always 
want to have “high frequency”, grid scale κ ≈ π, oscillations killed by a numerical scheme. 
In the particular case of this very special scheme, for this very special equation, one can get 
away with not doing this (i.e.: use λ = 1). But, in general, this is not a good idea. 

4.	 Note that the scheme in (1.26) is singular for λ = 1/2, that is: the equations determining 
u mn 

+1 may not have a solution. This is easy to see from (1.27), since G = ∞ for λ = 1/2 and 
κ = π. This is a very extreme case of instability. 

5.	 This scheme is implemented by the script scheme01i in the 18311  Toolkit. You 
should check the behavior of the scheme for various values of λ. For example: 

—	 For λ < 1 the scheme is unstable. However, when λ is very close to one (say: λ = 0.99), 
the instabilities grow very slowly, unless Δx is taken fairly small. 

—	 For λ > 1 the scheme is stable. However, when λ is large (say: λ = 8), the scheme is 
very dissipative. Everything decays rather fast, unless Δx is taken fairly small. 

—	 For λ = 1 the scheme is “exact”. Check what happens with the discontinuous initial 
data with the script scheme01i — only for λ = 1 the discontinuity is not smeared by the 
scheme (this is particularly bad for λ large). 

6.	 Finally, we check (1.20) 

Ge	 = exp(−i k Δt) = 1 − i k Δt − 
1 

k2 (Δt)2 + . . . 
2 

1 1 
G	 = = 

1 − λ + λ ei k Δx 1 + i k Δt − 1
2 k

2 Δt Δx + . . . 

=	 1 − i k Δt +
1 

k2 Δt Δx − k2 (Δt)2 + . . . (1.29)
2 

Thus t = O(Δt, Δx) in (1.20). 

1.3 Description of the tasks to be performed in the vNSA problems. 
Consider the numerical schemes, for the specified equations, that follow after this introduction. For 
these schemes: 

(i) Show that the scheme consistent. 
(ii) Do a von Neumann stability analysis. In particular: calculate the growth rate G as a function 

of κ, Δx, Δt, and the scheme parameters. 
(iii) Answer the question:	 can the scheme be made stable, and if so, under which conditions? In 

most cases this involves finding conditions under which G is inside the unit circle — that is, 
|G| ≤ 1 — for all κ. 

MATLAB
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(iv) Check under which conditions does the CFL condition apply, if possible, for hyperbolic problem 
schemes. 

(v) See “IMPORTANT” below. 

IMPORTANT: Download, and open, the file MATLABScriptsForProblemSet08.zip, which is to­

gether with the Problem Set # 8 statement (same web page, under “MATLAB scripts for problem 
set # 08”). The file “schemesREADME.m” explains how to use the scrips [no need to program 
anything]. The script names correspond to the problems — e.g.: scheme01a.m corresponds to 
vNSA01a. Use the scrips to check your answers, and provide evidence that you did so. 
This does not mean that you should include 100 plots with your answers (please, do not). For 
example, just two plots are enough for a stable scheme: one with parameters on one side of the 
stability boundary (but close), and another with parameters on the other side. 

2 Regular Problems. 

2.1 Statement: vNSA01a. Explicit forward FD for ut + ux = 0. 
Consider the scheme 

 m+1   m u =  −  u  λ (u mn n n+1 − u mn ), (2.30)

Δt 
where λ = > 0, for the equation u

 t + ux = 0. (2.31)
Δx

Perform the tasks stated in § 1.3. 

2.2 Statement: vNSA01b. Explicit backward FD for ut + ux = 0. 
Consider the scheme 

u m+1 = u m 
n n − λ (u mn − u m 

n 1), (2.32)−

Δt 
where λ = > 0, for the equation u + u = 0. (2.33)

Δx t x 

Perform the tasks stated in § 1.3. 

3 Special Problems. 

3.1 Statement: vNSA01d. Lax-Friedrichs FD for ut + ux = 0. 
Consider the scheme 

u m+1 1
  1 m m = (um

 + u mn 2 n+1 n 1) − λ (u n+1 − un 1), (3.34)− 2 −

Δt 
where λ = > 0, for the equation ut + ux = 0. (3.35)

Δx 
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Perform the tasks stated in § 1.3.  
Extra task (optional): Expand G for κ small,7 as in § 1.1.2, and compare the result with the exact  

i κ λ growth factor Ge = e − . This will lead you to a formula for the size of t in (1.20). Your answer 
should agree with the fact that this is a first order method. 

3.2 Statement: vNSA07h. Crank-Nicolson FD for ut = ux x. 
m+1 u  um

  The finite difference quotient	 n − n (3.36)
Δt 

provides a first order (error is O(Δt)) approximation to the derivative ut at both (xn, tm) and 
(xn, tm+1). It also yields a second order approximation at the mid-point: 

um+1 − um
n n	  = u + 1 t(xn, tm ) + O((Δt)2), (3.37) 

Δt 2

where t  t 1
m+ 1 = m + Δt. This fact is exploited in the Crank-Nicolson method, to get schemes that

2 2               
are second order in both space and time. For example, by taking the average of the (second order) 
centered differences approximations to ux x at times tm and tm+1, a second order approximation is 
obtained at the mid-point. This, together with (3.37) yields 

	  
um+1 − m

n 1 um+1     
n u 2 um+1 + um+1 um 2 um + um

  
=

⎛
 n −   

 ⎝	 +1 n n−1 
+ n+1 −  n  n−1 

Δt 2 (Δx)2	 (Δx)2 

⎞⎠ , (3.38)

    
( 

2 which is a O (Δt) ,  (Δx)2
) 

approximation to the equation ut = ux x. 

Perform the tasks stated in § 1.3, with the following modifications: 

1. Note that the scheme (3.38) is implicit, and consistent (by construction). Thus you do not 
have to check consistency. 

Δt 
2.	 For which values of ν is the scheme stable, where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ν = ?  

(Δx)2 

Extra task (optional): Can the condition in (1.13) be enforced? 

3. Optional/challenge:	 What behavior does the scheme have when ν is large, and the initial 
conditions have a large high frequency component (e.g.: a discontinuity)? Explain this in 
terms of the formula for the growth rate G given by the von Neumann stability analysis. 

Hint 3.1 [Relevant to item 3]. Run the MATLAB script scheme07h provided with this problem, 
with Δt = Δx and discontinuous initial conditions.8 Try to explain what you see. Does it agree 
with what the heat equation should be doing (remember that heat “hates” gradients)? 

7 That is, take Δx « 1, κ = k Δx, and Δt = λ Δx, with k and λ > 0 constant. 
8 Note that scheme07h takes Δx = 2 π/N and Δt = ν(Δx)2, where the scheme call is scheme07h(ν, ic, tf , N). Initial 

data with a discontinuity result if ic = 2, 3. Take tf ∼ 0.5 (i.e.: not too large), and N somewhere in 50 ≤ N ≤ 200. 
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i κ n−ν κ2 mNote that the equation has the solutions u = e i k x−k2 t, for which u(xn tm) = e — where 
κ = k Δx. Hence u(xn tm) = Gm

e e i κ n, where 

−ν κ2 
Ge = e . (3.39) 

This is the “exact” value of G. Note that Ge decreases in size very rapidly as the wave number 
κ grows, faster the larger ν is. This is the mechanism by which the heat equation immediately 
smoothens a discontinuity in the initial conditions. That is, if the initial conditions have a discon­

tinuity, then the Fourier series 9 
∞0 

i n x u(x, 0) = un e (3.40) 
n=−∞ 

will converge very poorly (un vanishes slowly as n ±∞, in fact: no better that 1/n). The discon­

tinuity results from a precise alignment (coherence) of the phases and amplitudes of the complex 
Fourier coefficients un. The exact evolution by the heat equation yields 

∞0 
i n x−n2 t u(x, t) = un e (3.41) 

n=−∞ 

2 
for t > 0. Now the Fourier coefficients un e −n t decay very rapidly with n, there are no longer any 
discontinuities, and we do not need to worry about coherence. 
Compare this with what this scheme does when ν is large. How well is (1.13) enforced? 

THE END.  

9 Assume periodic solutions with period 2 π, as scheme07h does. 
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