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Abstra
t 

These notes give examples illustrating how 
onservation prin
iples are used to obtain (phe­

nomenologi
al) 
ontinuum models for physi
al phenomena. The general prin
iples are pre­

sented, with examples from traÆ
 fow, river fows, granular fows, gas dynami
s and difusion. 
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1 Introdu
tion. 

In formulating a mathemati
al model for a 
ontinuum physi
al system, there are three basi
 steps 

that are often used: 

A.	 Identify appropriate 
onservation laws (e g mass, momentum, energy, et
) and their 
orre-

sponding densities and fuxes 

B.	 \rite the 
orresponding equations using 
onservation 

C.	 Close the system of equations by proposing appropriate relationships between the fuxes and 

the densities 

Of these steps, the mathemati
al one is the se
ond \hile it involves some subtlety, on
e you 

understand it, its appli
ation is fairly me
hani
al The frst and third steps involve p h ysi
al issues, 

and (generally) the third one is the hardest one, where all the main diÆ
ulties appear in developing 

a new model In what follows we will go through these steps, using some pra
ti
al examples to 

illustrate the ideas 

Of 
ourse, on
e a model is formulated, a fourth step arises, whi
h is that of analyzing and validating 

the model, 
omparing its predi
tions with observations and 
orre
ting it whenever needed This 

involves simultaneous mathemati
al and physi
al thinking You should never forget that a model is 

no better than the approximations (expli
it and/or impli
it) made when deriving it. It is never a question 

of just "solving" the equations, forgetting what is behind them 

2 Continuum Approximation; Densities and Fluxes. 

The modeling of physi
al variables as if they were a 
ontinuum feld is almost always an approxima-

tion For example, for a gas one often talks about the density p, or the fow velo
ity u, and thinks 

of them as fun
tions of spa
e and time: p = p(x  )  or u = u(x  ) But the fa
t is that a gas is 

made up by very many dis
rete mole
ules, and the 
on
epts of density, or fow velo
ity, only make 

sense as lo
al averages These averages must be made over s
ales large enough that the dis
reteness 

of the gas be
omes irrelevant, but small enough that the notion of these lo
al averages varying in 

spa
e and time makes sense 

Thus, in any 
ontinuum modeling there are several s
ales. On the one hand one has the 

"visible" s
ales, whi
h are the ones over whi
h the mathemati
al variables in the model vary 

(densities, fuxes) On the other hand, there are the "invisible" s
ales, that pertain to the mi
ro-

s
ales that have been averaged in obtaining the model The se
ond set of s
ales must be mu
h 

smaller than the frst set for the model to b e v alid. Unfortunately, this is not always the 


ase, and whenever this fails all sort of very interesting (and largely open) problems in modern 

s
ien
e and engineering arise 

Note that the reason people insist on trying to use 
ontinuum type models, even in situations where 

one runs into the diÆ
ulties mentioned at the end of the last paragraph, is that 
ontinuum models 

are often mu
h simpler (both mathemati
ally and 
omputationally) than anything else, and supply 

general understanding that is often very valuable 

The frst step in the modeling pro
ess is to identify 
onserved quantities (e g mass) and defne the 

appropriate densities and fuxes - a s in the following examples 

...



 

 

 

 

 

  

  

  

  

Conservation Laws in Continuum Modeling. MIT, Mar
h, 2001 - Rosales. 3 

2.1 Examples 

Example 2.1 River Flow (a one dimensional example). 

Consider a ni
e river (or a 
hannel) fowing down a plain (e.g. the Mississippi, the Nile, et
.). 

Let x be the length 
oordinate along the river, and at every point (and time) along the river let 

A = A(x ) be the flled (by water) 
ross-se
tion of the river bed. 

We note now that A is the volume density (volume per unit length) of water along the river. We 

also note that, sin
e water is in
ompressible, volume is 
onserved.1 Finally, let Q = Q(x ) be 

the volume fux of water down the river (i.e.: volume per unit time). Noti
e that, if u = u(x ) is 

the average fow velo
ity down the river, then Q = uA (by defnition of u). 

Thus, in this 
ase, an appropriate 
onservation law is the 
onservation of volume, with 
orre-

sponding density A and fux Q. We note that both A and Q are  re  gularly measured at various points 

along important rivers. 

Example 2.2 TraÆ
 Flow (a one dimensional example). 

Consider a one lane road, in a situation where there are no 
ross-roads (e.g.: a tunnel, su
h as the 

Lin
oln tunnel in NYC, or the Summer tunnel in Boston). Let x be length along the road. Under 

"heavy" traÆ
 
onditions,2 we 
an introdu
e the notions of traÆ
 density p = p(x ) (
ars per 

unit length) and traÆ
 fow q = q(x ) (
ars per unit time). Again, we have q = up where u is 

the average 
ar fow velo
ity down the road. 

In this 
ase, the appropriate 
onservation law is, obviously, the 
onservation of 
ars. Noti
e that 

this is one example where the 
ontinuum approximation is rather borderline (sin
e, for example, the 

lo
al averaging distan
es are almost never mu
h larger than a few 
ar separation lengths). Never-

theless, as we will see, one 
an gain some very interesting insights from the model we will develop 

(and some useful pra
ti
al fa
ts). 

Example 2.3 Heat Condu
tivity. 

Consider the thermal energy in a 
hunk of solid material (su
h as, say, a pie
e of 
opper). Then 

the thermal energy density (thermal energy per unit volume) is given by e = 
 p T ( x ) , where 

T is the temperature, 
 is the spe
if
 heat per unit mass, and p is the density of the material 

(for simpli
ity we will assume here that both 
 and p are 
onstants). The thermal energy fow, 

Q = Q(x ) is now a ve
tor, whose magnitude gives the energy fow a
ross a unit area normal to 

the fow dire
tion. 

In this 
ase, assuming that heat is not being lost or gained from other energy forms, the relevant 


onservation law is the 
onservation of heat energy. 

Example 2.4 Steady State (dry) Granular Flow. 

Consider steady state (dry) granular fow down some 
ontainer (e.g. a silo, 
ontaining some dry 

granular material, with a hole at the bottom). At every point we 
hara
terize the fow in terms of two 

velo
ities: an horizontal (ve
tor) velo
ity u = u(x y z ) , and a verti
al (s
alar) velo
ity 

v = v(x y z ) , where x and y are the horizontal length 
oordinates, and z is the verti
al one. 

1 \e are negle
ting here su
h things as evaporation, seepage into the ground, et
. This 
annot always be done. 

2 \hy m ust we assume "heavy" traÆ
? 
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The mass fow rate is then given by Q = p [u  ] , where p is the mass density - whi
h we will 

assume is nearly 
onstant. The relevant 
onservation is now the 
onservation of mass. 

This example is diferent from the others in that we are l o oking at a steady state situation. We also 

note that this is another example where the 
ontinuum approximation is quite often "borderline", 

sin
e the s
ale separation between the grain s
ales and the fow s
ales is not that great. 

Example 2.5 Invis
id Fluid Flow. 

For a fuid fowing in some region of spa
e, we 
onsider now two 
onservation laws: 
onserva­

tion of mass and 
onservation of linear momentum. Let now p = p(x ) , u = u ( x ) and 

p = p(x ) b e, respe
tively, the fuid density, fow velo
ity, and pressure - where we use either 

[u v w] or [u1 ] to denote the 
omponents of u, and either [x y z] or [x1  x  x] to denote the 2  2  


omponents of x. Then: 

• The mass 
onservation law density is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p .  

• The mass 
onservation law fow is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p u .  

• The linear momentum 
onservation law density is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p u .  

• The linear momentum 
onservation law fow is . . . . . . . . . . . . . . . . . . . . . . . . . . . . p u u  p I . 

The frst two expressions above are fairly obvious, but the last two (in parti
ular, the last one) 

require some explanation. First of all, momentum is a ve
tor quantity. Thus its 
onservation is 

equivalent to three 
onservation laws, with a ve
tor density and a rank two tensor fow (we explain 

this below). Se
ond, momentum 
an be t r ansferred f r om one part of a liquid to another in two ways: 

Adve
tion: as a par
el of fuid moves, it 
arries with it some momentum. Let us 
onsider this 

me
hanism 
omponent by 
omponent: The momentum density 
omponent p u i 

is adve
ted with a 

fow rate p u i 

u = p [ u i 

u u 2 i 

u ] . Putting all three 
omponents together, we get for the momen-1 i  

tum fux (due to adve
tion) the expression p [ui 

uj 

] = p u u - i.e., a r ank two tensor, where e a
h 

row (freeze the frst index) 
orresponds to the fux for one of the momentum 
omponents. 

For
es: momentum is transferred by the for
es exerted by one par
el of fuid on another. If we 

assume that the fuid is invis
id, then these for
es 
an only be normal, and are given by the pres-

sure (this is, a
tually, the "defnition" of invis
id). Thus, again, let us 
onsider this me
hanism 


omponent by 
omponent: the momentum transfer by the pressure in the dire
tion given by the unit 

ve
tor4 ei 

= [ Æ i j 

] , 
 orresponding to the density p u i 

, is the for
e per unit area (normal to e ) by the 

fuid. Thus the 
orresponding momentum fow ve
tor is p ei. Putting all three 
 omponents together, 

we get for the momentum fux (due to pressure for
es) the expression p [Æi j 

] = p I - again a rank 

two tensor, now a s
alar multiple of the identity rank two tensor I. 

Regarding the zero vis
osity (invis
id) assumption: Fluids 
an also exert tangential for
es, whi
h 

also afe
t the momentum transfer. Momentum 
an also be transferred in the normal dire
tion by 

difusion of "faster" mole
ules into a region with "slower" mole
ules, and vi
eversa. Both these 

efe
ts are 
hara
terized by the vis
osity 
oeÆ
ient - whi
h here we assume 
an be negle
ted. 

� 

Note that in some of the examples we have given only one 
onservation law, and in others two 

(further examples, with three or more 
onservation laws invoked, exist) The reason will be
ome 


lear when we go to the third step (step C in se
tion 1) In fa
t, steps A and C in se
tion 1 are 

intimately linked, as we will soon see 

3 If you do not know what a tensor is, just think of it as a ve
tor with more than one index (the rank is the numb e r 

of indexes). This is all you need to know to understand what follows. 

4 Here Æ8 j  

is the Krone
ker delta, equal to 1 if i = j, and to 0 if i  = j. 

; v

; t ; t

; t
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3 Conservation Laws in Mathemati
al Form. 

In this se
tion we assume that we have identifed some 
onservation law, with 
onserved density 

p = p(x ), and fux F = F(x ),  and derive mathemati
al formulations for the 
onservation hy-

pothesis In other words, we will just state in mathemati
al terms the fa
t that p is the density for 

a 
onserved quantity, with fux F 

First 
onsider the one dimensional 
ase (where the fux F is a s
alar, and there is only one spa
e 


oordinate: x) In this 
ase, 
onsider some (fxed) arbitrary interval in the line n =  a  x  b , 

and let us look at the evolution in time of the 
onserved quantity inside this interval At a n y given 

time, the total amount of 
onserved stuf in n is given by (this by defnition of density)  
b 

N( ) = p ( x ) dx . (3 1) 

l 

Further, the net rate at whi
h the 
onserved quantity enters n is given by (defnition of fux) 

R( ) = F ( a ) - F (b ) . (3 2) 

It is also possible to have sour
es and sinks for the 
onserved quantity 

5 In this 
ase let 

s = s(x ) b e the total net amount of the 
onserved quantity, p e r unit time and unit length, 

provided by the sour
es and sinks For the interval n we have then a net rate of added 
onserved 

stuf, p e r unit time, given by  
l

b 

S( ) = s ( x ) dx . (3 3) 

The 
onservation law 
an now b e stated in the mathemati
al form 

d 

N = R S (3 4)
d 

whi
h must apply for any 
hoi
e of interval n. Sin
e this equation involves only integrals of 

the relevant densities and fuxes, it is known as the Integral Form of the Conservation Law. 

Assume now that the densities and fuxes are ni
e enough to have ni
e derivatives 

Then we 
an write: 

d 

 
b � 

 
b � 

N = p ( x ) dx and R = - F ( x ) dx . (3 5)
d l 

� l 

�x 

Equation (3 4) 
an then b e re-written in the form   
b � � 

p ( x ) F ( x ) - s(x ) dx = 0 (3 6)
l � �x 

whi
h m ust apply for any 
 hoi
e of the interval n It follows that the integrand above in (3 6) must 

vanish identi
ally This then yields the following partial diferential equation involving the density, 

fux and sour
e terms: 

� � 

p ( x ) F ( x ) = s ( x ) . (3 7)
� �x 

This equation is known as the Diferential Form of the Conservation Law. 

5 As an illustration, in the invis
id fuid fow 
ase of example 2.5, the efe
ts of gravity translate into a verti
al 

sour
e of momentum, of strength  9  per unit volume  where 9 is the a

eleration of gravity. Other body for
es 

have similar efe
ts. 

; t ; t

t t
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Remark 3.1 You may wonder why we even bother to give a name to the form of the equations 

in (3.4), sin
e the diferential form in (3.7) appears so mu
h more 
onvenient to deal with (it 

is just one equation, not an equation for every possible 
hoi
e of n). The reason is that it is 

not always possible to assume that the densities and fuxes have ni
e derivatives. Oftentimes the 

physi
al systems involved develop, as they evolve,6 short enough s
ales that for
e the introdu
tion of 

dis
ontinuities into the densities and fuxes - and then (3.7) no longer applies, but (3.4) still does. 

Sho
k waves are the best known example of this situation. Examples of sho
k waves you may be 

familiar with are: the soni
 boom produ
ed by a supersoni
 air
raft; the hydrauli
 jump o

urring 

near the bottom of the dis
harge ramp in a large dam; the wave-front asso
iated with a food moving 

down a river; the ba
kward fa
ing front of a traÆ
 jam; et
. Some sho
k waves 
an 
ause quite 

spe
ta
ular efe
ts, su
h as those produ
ed by supernova explosions. 

Now let us 
onsider the multi­dimensional 
ase, when the fux F is a ve
tor In this 
ase, 


onsider some (fxed but arbitrary) region in spa
e n, with boundary �n , and inside unit normal 

along the boundary nf \e will now look at the evolution in time of the 
onserved quantity inside 

this region At any given time, the total amount of 
onserved stuf in n is given by 

N( ) = p ( x ) dV . (3 8)
k 

On the other hand, the net rate at whi
h the 
onserved quantity enters n is given by 

R( ) = F ( x )  nf dS . (3 9) 

� k 

Let also s = s(x ) be the total net amount of 
onserved quantity, per unit time and unit volume, 

provided by a n y sour
es and/or sinks For the region n we h a v e then a net rate of added 
onserved 

stuf, p e r unit time, given by 

S( ) = s ( x ) dV . (3 10)
k 

The 
onservation law 
an now b e stated in the mathemati
al form (
ompare with equation (3 4)) 

- Integral Form of the Conservation Law: 

d 

N = R S (3 11)
d 

whi
h must apply for any 
hoi
e of the region n.  

If the densities and fuxes are ni
e enough to have ni
e derivatives, we 
an write:  

d 

k 

� 

N = p ( x ) dV and R = -
k 

div(F(x )) dV (3 12)
d � 

where we h a v e used the Gauss divergen
e theorem for the se
ond integral Equation (3 11) 
an then 

b e re-written in the form 

p ( x ) div(F(x )) - s(x ) dV = 0 (3 13)
�k 

� 

6 Even when starting with very ni
e initial 
onditions. 
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whi
h m ust apply for any 
 hoi
e of the region n It follows that the integrand above in (3 13) must 

vanish identi
ally This then yields the following partial diferential equation involving the density, 

fux and sour
e terms (
ompare with equation (3 7)) 

� 

p ( x ) div(F(x )) = s(x ) . (3 14)
� 

This equation is known as the Diferential Form of the Conservation Law. 

Remark 3.2 In the 
ase of a ve
tor 
onservation law, the density p and the sour
e term s 

will both be ve
tors, while the fux F will be a rank two tensor (ea
h row being the fux for the 


orresponding element in the density ve
tor p). In this 
ase equation (3.14) is valid 
omponent by 


omponent, but 
an be given a ve
tor meaning if we defne the divergen
e for a rank two tensor 

F = [ F i j 

] as follows:    �  1div(F) = F i j
�x jj 

so that div(F) is a ve
tor (ea
h element 
orresponding to a row in F). You should 
he
k that this is 


orre
t.7 

4 Phenomenologi
al Equation Closure. 

From the results in se
tion 3 it is 
lear that ea
h 
onservation prin
iple 
an b e used to yield an 

evolution equation relating the 
orresponding density and fux However, this is not enough to 

provide a 
omplete system of equations, sin
e ea
h 
onservation law provides only one equation, 

but requires two (in prin
iple) "independent" variables Thus extra relations b e t w een the fuxes 

and the densities must b e found to b e able to formulate a 
omplete mathemati
al model This 

is the Closure Problem, and it often requires making further assumptions and approximations 

about the physi
al pro
esses involved 

Closure is a
tually the hardest and the subtler part of any model formulation How g o o d a model 

is, typi
ally depends on how w ell one 
an do this part Oftentimes the physi
al pro
esses 
onsidered 

are very 
omplex, and no g o o d understanding of them exist In these 
ases one is often for
ed to 

make "brute for
e" phenomenologi
al approximations (some formula - with a few free parameters 

- relating the fuxes to the densities is proposed, and then it is ftted to dire
t measurements) 

Sometimes this works reasonably well, but just as often it does not (produ
ing situations with very 

many diferent empiri
al fts, ea
h working under some situations and not at all in others, with no 


lear way of knowing "a priori" if a parti
ular ft will work for any given 
ase) 

\e will illustrate how one goes about resolving the 
losure problem using the examples introdu
ed 

earlier in subse
tion 2 1 These examples are all "simple", in the sense that one 
an get away with 

algebrai
 formulas relating the fuxes with the densities However, this is not the only possibility, 

and situations where extra diferential equations must be introdu
ed also arise The more 
omplex 

the pro
ess being modeled is, the worse the problem, and the harder it is to 
lose the system (with 

very many 
hallenging problems still not satisfa
torily resolved) 

 �
7 Re
all that, for a ve
tor feld, div(v) =  j  

.  

� j
j 

.

; t ; t ; t
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An important point to be made is that the formulation of an adequate mathemati
al model 

is only the beginning. As the examples below will illustrate, it is often the 
ase that the 

mathemati
al models obtained are quite 
ompli
ated (refe
ting the fa
t that the phenomena being 

modeled are 
omplex), and often poorly understood Thus, even in 
ases where a

urate mathe-

mati
al models have been known for well over a 
entury (as in 
lassi
al fuids), there are plenty 

of open problems still around and even now new, un-expe
ted, behaviors are being dis
overed 

in experimental laboratories The fa
t is that, for these 
omplex phenomena, mathemati
s alone 

is not enough There is just too mu
h that 
an happen, and the equations are too 
ompli
ated to 

have expli
it solutions The only possibility of advan
e is by a simultaneous approa
h in
orporating 

experiments and observations, numeri
al 
al
ulations, and theory 

4.1 Examples 

Example 4.1 River Flow (see example 2.1). 

In this 
ase we 
an write the 
onservation equation 

At 

Qx 

= 0 (4 1) 

where A and Q were introdu
ed in example 2.1, and we ignore any sour
es or sinks for the water 

in the river. In order to 
lose the model, we now 
laim that it is reasonable to assume that Q 

is a fun
tion of A; that is to say Q = Q(A x) - for a uniform, man-made 
hannel, one has 

Q = Q(A). We justify this hypothesis as follows: 

First: For a given river bed shape, when the fow is steady (i.e.: no 
hanges in time) the average 

fow velo
ity u follows from the balan
e between the for
e of gravity pulling the water down the 

slope, and the fri
tion for
e on the river bed. This balan
e depends only on the river bed shape, its 

slope, and how mu
h water there is (i.e. A). Thus, under these 
onditions, we have u = u(A x). 

Consequently Q = Q(A x) = u ( A x) A. 

Se
ond: As long as the fow in the river does not deviate too mu
h from steady state ("slow" 


hanges), the we 
an assume that the relationship Q = Q(A x) that applies for steady fow remains 

(approximately) valid. This is the quasi­equilibrium approximation, whi
h is often invoked 

in problems like this. How well it works in any given situation depends on how fast the pro
esses 

leading to the equilibrium situation (the one that leads to Q = Q(A x)) work - relative to the time 

s
ales of the river fow variations one is interested in. For a
tual rivers and 
hannels, it turns out 

that this approximation is good enough for many appli
ations. 

Of 
ourse, the a
tual fun
tional relationship Q = Q(A x) (to be used to model a spe
if
 river) 


annot be 
 al
ulated theoreti
ally, and must be extra
ted f r om a
tual measurements of the river fow 

under various 
onditions. The data is then ftted b y ( r elatively simple) empiri
al formulas, with free 

parameters sele
ted for the best possible mat
h. 

However, it is possible to get a qualitative idea of roughly how Q depends on A, by the 

following simple argument: The for
e pulling the water downstream (gravity) is proportional to the 

slope of the bed, the a

eleration of gravity, the density of water, and the volume of water. Thus, 

roughly speaking, this for
e has the form Fg 

� 
g 

A (where 
g 

= 
g(x) is some fun
tion). On the 

other hand, the for
e opposing this motion, in the simplest possible model, 
an be thought as being 

...

+ ;



�
�

�  
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proportional to the wetted p erimeter of the river bed ( r oughly P e A) times the fri
tional for
e o n  
the bed (roughly proportional to the velo
ity u). That is Ff 


f 

u A, for some fri
tion 
oeÆ
ient  

f 

. These two for
es must balan
e (Fg 

= Ff 

), leading to u 
u A (where 
u 

= 
g/
f), thus: 

A  2Q 
u 

. (4 2) 

Of 
ourse, this is too simple for a real river. But the feature of the fux in
reasing faster than linear 

is generally true - so that Q as a fun
tion of A produ
es a 
on
ave graph, with dQ/dA > 0 

and d2Q/dA2 > 0. 

Example 4.2 TraÆ
 Flow (see example 2.2). 

In this 
ase we 
an write the 
onservation equation 

pt 

qx 

= 0 (4 3) 

where p and q were introdu
ed in example 2.2, and we ignore any sour
es or sinks for 
ars (from 

road exit and in
oming ramps, say). Just as in the river model, we 
lose now the equations by 


laiming that it is reasonable to assume that q is a fun
tion of p, that is to say q = q(p x) - for 

a ni
e, uniform, road, one has q = q(p). Again, we use a quasi­equilibrium approximation to 

justify this hypothesis: 

Under steady traÆ
 
onditions, it is reasonable to assume that the drivers will adjust their 
ar 

speed to the lo
al density (drive faster if there are few 
ars, slower if there are many). This yields 

u = u(p x), thus q = u(p x)p = q(p x). Then, if the traÆ
 
onditions do not vary too rapidly, 

we 
an assume that the equilibrium relationship q = q(p x) will still be (approximately) valid -

quasi-equilibrium approximation. 

As in the river fow 
ase, the a
tual fun
tional dependen
e to be used for a given road must follow 

from empiri
al data. Su
h a ft for the Lin
oln tunnel in NYC is given by! 

q = a p log(pj 

/p) (4 4) 

where a = 17 . 2 mph, and pj 

= 228 vpm (vehi
les per mile). The generi
 shape of this formula 

is always true: q is a 
onvex fun
tion of p, rea
hing a maximum fow rate qm 

for some value 

p = pm, and then de
reases ba
k to zero fow at a jamming density p = pj 

. In parti
ular, dq/dp is 

a de
reasing fun
tion of p, with d2q/dp2 < 0. 

For the formula above in (4.4), we have: pm 

= 83 vpm and qm 

= 1430 vph (vehi
les per hour), with 

a 
orresponding fow speed um 

= qm/pm 

= a. The very existen
e of pm 

tea
hes us a rather useful 

fa
t, even before we solve any equation: in order to maximize the fow in a highway, we should 

try to keep the 
ar density near the optimal value pm. This is what the lights at the entran
es to 

freeways attempt to do during rush hour. Unfortunately, they do not work very well for this purpose, 

as some analysis with the model above (or just plain observation of an a
tual freeway) will show. 

In this example the 
ontinuum approximation is rather borderline. Nevertheless, the equations have 

the right qualitative (and even rough quantitative) behavior, and are rather useful to understand 

many features of how heavy traÆ
 behaves. 

8 Greenberg, H., 1959. An analysis of traÆ
 fow. Oper. Res. 7:79�85. 
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Example 4.3 Heat Condu
tivity (see example 2.3). 

In this 
ase we 
an write the 
onservation equation 


 p T t 

div(Q) = s (4 5) 

where 
 p T and Q were introdu
ed in example 2.3, and s = s(x ) is the heat supplied (per unit 

volume and unit time) by any sour
es (or sinks) - e.g. ele
tri
al 
urrents, 
hemi
al rea
tions, et
. 

We now 
omplete the model by observing that heat fows from hot to 
old, and postulating that 

the heat fow a
ross a temperature jump is proportional to the temperature diferen
e (this 
an be 


he
ked experimentally, and happens to be an a

urate approximation). This leads to Fi
k's Law 

for the heat fow: 

Q = -� VT (4 6) 

where � is the 
oeÆ
ient of thermal 
ondu
tivity of the material.9 For simpli
ity we will 

assume here that all of 
, p, and � are 
onstant - though this is not ne
essarily true in general. 

Substituting (4.6) into (4.5), we then obtain the heat or difusion equation: 

Tt 

= v V2T f (4 7) 

� s 

where v = is the thermal difusivity of the material, and f = . 


 p 
 p 

In deriving the equation above, we assumed that the heat was 
ontained in a 
hunk of solid material. 

The reason for this is that, in a fuid, heat 
an also be t r ansported by motion of the fuid (
onve
tion). 

In this 
ase (4.6) above must be modifed to: 

Q = -� VT 
 p T u (4 8) 

where u = u(x ) is the fuid velo
ity. Then, instead of (4.7), we obtain 

Tt 

div(uT ) = v V 

2 T f . (4 9) 

In fa
t, this is the simplest possible situation that 
an o

ur in a fuid. The reason is that, generally, 

the fuid density depends on temperature, so that the fuid motion ends up 
oupled to the temperature 

variations, due to buoyan
y for
es. Then equation (4.g) must be augmented with the fuid equations, 

to determine u and the other relevant fuid variables - see example 4.5. 

Length2 

Remark 4.1 Note that v has dimensions . Thus, given a length L, a time s
ale is provided 

Time 

by T = L2 /v. Roughly speaking, this is the amount of time it would take to heat (or 
ool) a region 

of size L by difusion alone. If you go and 
he
k the value of v for (say) water, you will fnd out 

that it would take a rather long time to heat even a 
up of tea by difusion alone (you should do this 


al
ulation). The other term in (4.g) is 
ru
ial in speeding things up. 

Remark 4.2 If the fuid is in
ompressible, then div(u) = 0 (see example 4.5), and equation (4.g) 

takes the form 

Tt  u ) T = v V 

2 T f . (4 10) 

Note that the left hand side in this equation is just the time derivative of the temperature in a fxed 

par
el of fuid, as it is being 
arried around by the fow. 

9 " must be measured experimentally, and varies from material to material. 
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Remark 4.3 Equations su
h as (4.g) and (4.10) are satisfed not just by the temperature, but 

by many other quantities that propagate by difusion (i.e.: their fuxes satisfy Fi
k's Law (4.6)). 

Examples are given by any 
hemi
als in solution in a liquid (salt, sugar, 
olorants, pollutants, et
.). 

Of 
ourse, if there are any rea
tions these 
hemi
als parti
ipate in, these rea
tions will have to be 

in
orporated into the equations (as sour
es and sinks). 

Example 4.4 Steady State (dry) Granular Flow (see example 2.4). 

In this 
ase we 
an write the 
onservation equation 

div(Q) = 0	 (4 11) 

where Q = p[u  ] is as in example 2.4, and there are no time derivatives involved be
ause we 

assumed that the density p was nearly 
onstant (we also assume that there are no sour
es or sinks 

for the media). These equation involves three unknowns (the three fow velo
ities), so we need some 

extra relations between them to 
lose the equation. 

The argument now is as follows: as the grain parti
les fow down (be
ause of the for
e of gravity), 

they will also - more or less randomly - move to the sides (due to parti
le 
ollisions). We 
laim 

now that, on the average, it is easier for a parti
le to move from a region of low verti
al velo
ity to 

one of high verti
al velo
ity than the reverse.10 The simplest way to model this idea i s t o p r opose that 

the horizontal fow velo
ity u is proportional to the horizontal gradient of the verti
al fow velo
ity 

v. Thus we propose a law of the form: 

u = b V v (4 12)� 

where b is a 
oeÆ
ient (having length dimensions) and V denotes the gradient with re­� 

spe
t to the horizontal 
oordinates x and y. Two important points: 

A.	 Set the 
oordinate system so that the z axis points down. Thus v is positive when the fow is 

downwards, and b above is positive. 

B.	 Equation (4.12) is a purely empiri
al proposal, based on some rough intuition and experimental 

observations. However, it works. The predi
tions of the resulting model in equation (4.13) 

below have been 
he
ked against laboratory experiments, and they mat
h the observations, 

provided that the value of b is adjusted properly (typi
ally, b must be taken around a few 

parti
le diameters). 

Substituting (4.12) into (4.11), using the formula for the divergen
e, and eliminating the 
ommon 


onstant fa
tor p, we obtain the following model equation for the verti
al velo
ity v: 

0 =	 v b V 

2 v = v b ( v xx 

v  )  .  (4 13) 

� 

Note that this is a difusion equation, ex
ept that the role of time has been taken over by the verti
al 


oordinate z. Mathemati
al analysis of this equation shows that it only makes sense to solve it 

for z de
reasing; i.e.: from bottom to top in the 
ontainer where the fow takes pla
e. 

This, a
tually, makes perfe
t physi
al sense: if you have a 
ontainer full of (say) dry sand, and 

you open a hole at the bottom, the motion will propagate upwards through the media. On the other 

hand, if you move the grains at the top, the ones at the bottom will remain undisturbed. In other 

words, information about motion in the media propagates upward, not downwards. 

1OIntuitively: where the fow speed is higher, there is more spa
e between parti
les where a new parti
le 
an move 

into. 
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Example 4.5 Invis
id Fluid Flow (see example 2.5). 

In this 
ase, using the densities and fuxes introdu
ed in example 2.5, we 
an write the 
onservation 

equations: 

pt 

div(p u) = 0 (4 14) 

for the 
onservation of mass, and 

(p u)t 

div(p u u) V p = F (4 15) 

for the 
onservation of momentum. Here F = F(x ) denotes the body for
es11 (whi
h are mo-

mentum sour
es), and we have used the mathemati
al identity (you should 
he
k this) div(p I) = V p . 

A nother easy to 
he
k mathemati
al identity is div(u m) = ( div(m)) u  ( m  V ) u . Using this 

se
ond identity, with m = p u, in equation (4.15), and substituting from equation (4.14) to elimi-

nate the term 
ontaining the divergen
e of m, we obtain: 

p (ut V u ) u ) V p = F . (4 16)

The problem now is that we have four equations and fve unknowns (density, pressure and the three 

velo
ities). An extra equation is needed. Various possibilities exist, and we illustrate a few 

below. 

In
ompressibility Assumption (liquids). 

Liquids are generally very had to 
ompress. This means that, as a par
el of fuid is 
arried a r ound by 

the fow, its volume (equivalently, its density) will 
hange very little. If we then make the assumption 

that the liquid density does not 
hange at all (due to pressure 
hanges ... it 
ertainly may 
hange due 

to temperature 
hanges, or solutes12 in the liquid), then we obtain the following additional equation: 

pt V u ) p = 0 . (4 17)

This equation simply states that the time derivative of the density, following a par
el of fuid as it 

moves, vanishes. In other words: the fuid is in
ompressible (though it need not have a 
onstant 

density). In this 
ase we 
an write a 
omplete system of equations for the fuid motion. Namely:  
0 = pt  V u ) p   
0 = div(u) (4 18)   F = p (ut  V u ) u ) V p 

where the se
ond equation follows from (4.14), upon use of (4.17). These are known as the In
om­

pressible Euler Equations for a fuid. The "simplest" situation arises when p 
an be assumed 


onstant, and then the frst equation above is not needed. However, even in this 
ase, the behavior 

of the solutions to these equations is not well understood - and extremely ri
h. 

Remark 4.4 The equations above ignore vis
ous efe
ts, important in modeling many physi
al sit-

uations. Vis
osity is in
orporated with the method used in example 4.3, by adding to the momentum 

fux 
omponents proportional to derivatives of the fow velo
ity u. What results from this are the 

In
ompressible Navier­Stokes Equations. 

Furthermore, heat 
ondu
tion efe
ts 
an also be 
 onsidered (and are n e e ded t o 
 orre
tly model many 

physi
al situations). This requires the introdu
tion of a new independent variable into the equations 

(temperature), and the use of one more 
onservation law (energy). 

11 Su
h as gravity.  

12 For example, salt.  
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Gas Dynami
s. 

For gases one 
annot assume in
ompressibility. In this 
ase, one must introdu
e another 
onser-

vation law (
onservation of energy), and yet another variable: the internal energy p e r unit 

mass e. This results in fve equations (
onservation of mass (4.14), 
onservation of momentum 

(4.15), and 
onservation of energy) and six variables (density p, fow velo
ity u, pressure p and 

internal energy e). At this stage thermodynami
s 
omes to the res
ue, providing an extra rela-

tionship: the equation of state. For example, for an ideal gas with 
onstant spe
if
 heats 

(polytropi
 gas) one has: 

p 

e = 
v 

T and p = R p T = Equation of state: e = (4 19)
(r - 1) p 

where 
v 

is the spe
if
 heat at 
onstant v olume, 
p 

is the spe
if
 heat at 
onstant pressure, 

R = 
p 

- 
v 

is the gas 
onstant and r = 
p/
v 

is the ratio of spe
if
 heats. 

A simplifying assumption that 
an be made, appli
able in some 
ases, is that the fow is isentropi
.1 

In this 
ase the pressure is a fun
tion of the density only, and (4.14) and (4.15) then form a 
omplete 

system: the Isentropi
 Euler Equations of Gas Dynami
s. For a polytropi
 gas: 

p = �p 

i (4 20) 

where is a 
onstant. In one dimension the equations are 

pt p u ) x 

= 0 and (p u ) t  p u 

2 p ) x 

= 0 (4 21) 

where p = p(p). 

Remark 4.5 The 
losure p r oblem in this last example involving gas dynami
s seemed r ather simple, 

and (apparently) we did not have to 
all upon any "quasi-equilibrium" approximation, or similar. 

However, this is so only be
ause we invoked an already existing (mayor) theory: thermodynami
s. 

In efe
t, in this 
ase, one 
annot get 
losure unless thermodynami
s is developed frst (no small 

feat). Furthermore: in fa
t, a quasi-equilibrium approximation is involved. Formulas su
h as the ones 

above in (4.19, apply only for equilibrium thermodynami
s! Thus, the 
losure p r oblem for this example 

is resolved in a fashion that is exa
tly analogous to the one used in several of the previous examples. 

Remark 4.6 In the fashion similar to the one explained i n r emark 4.4 for the in
ompressible 
ase, 

vis
ous and heat 
ondu
tion efe
ts 
an be in
orporated into the equations of Gas Dynami
s. The 

result is the Navier­Stokes Equations for Gas Dynami
s. 

5 Con
luding Remarks. 

Here we h a v e presented the derivation (using 
onservation prin
iples) of a few systems of equations 

used in the modeling of physi
al phenomena The study of these equations, and of the physi
al 

phenomena they model, on the other hand, would require several lifetimes (and is still pro
eeding) 

In parti
ular, noti
e that here we have not even mentioned the very important subje
t of 

boundary 
onditions (what to do at the boundaries of, say, a fuid) This introdu
es a whole set 

of new 
ompli
ations, and physi
al efe
ts (su
h as surfa
e tension) 

13 That is: the entropy is the same everywhere. 
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