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Abstra
t 

These notes give a few examples illustrating how 
ontinuum models 
an b e derived from spe
ial 

limits of dis
rete models. Only the simplest 
ases are 
onsidered, illustrating some of the most 

basi
 ideas. These te
hniques are useful be
ause 
ontinuum models are often mu
h easier to deal 

with than dis
rete models with very many variables, both 
on
eptually and 
omputationally. 
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1 Introdu
tion. 

Continuum approximations are useful in des
ribing dis
rete systems with a large number of degrees 

of freedom In general, a 
ontinuum approximation will not des
ribe all possible solutions of the 

dis
rete system, but some spe
ial 
lass that will depend on the approximations and assumptions 

made in deriving the 
ontinuum model \hether or not the approximation is useful in des
ribing 

a parti
ular situation, will depend on the appropriate approximations being made The most 

su

essful models arise in situations where most solutions of the dis
rete model evolve rapidly in 

time towards 
onfgurations where the assumptions behind the 
ontinuum model apply 

The basi
 step in obtaining a 
ontinuum model from a dis
rete system, is to identify some basi
 


onfguration (solution of the dis
rete model) that 
an be des
ribed by a few parameters Then one 

assumes that the full solution of the system 
an be des
ribed, near every point in spa
e and at every 

time, by this 
onfguration - for some value of the parameters The parameters are then assumed 

to vary in spa
e and time, but on s
ales (ma
ro-s
ales) that are mu
h larger than the ones asso
iated 

with the basi
 
onfguration (mi
ro-s
ales) Then one attempts to derive equations des
ribing the 

evolution of these parameters in the ma
ro-s
ales, thus averaging out of the problem the mi
ro-

s
ales There is a 
lose 
onne
tion b e t w een this approa
h, and the"quasi-equilibrium" approximations 

that are often invoked to "
lose" 
ontinuum sets of equations derived using 
onservation laws. 

For example, when deriving the equations for Gas Dynami
s in Statisti
al Me
hani
s, it is assumed 

that the lo
al parti
le intera
tions rapidly ex
hange energy and momentum between the mole
ules 

�

� 

- so that the lo
al probability distributions for velo
ities take a standard form (equivalent t o l o 
 a l 

thermodynami
 equilibrium) \hat exa
tly makes these assumptions work (in terms of properties 

of the governing, mi
ro-s
ale, equations) is rather poorly understood But that they work rather 

well 
annot be denied In these notes we will 
onsider examples that are rather simpler than these 

ones, however, where the "lo
al 
onfgurations" tend to be rather trivial 

2 Wave Equations from Mass-Spring Systems. 

Longitudinal Motion. 

Consider an array of bodies/parti
les, 
onne
ted by springs, and restri
ted1 to move on a straight 

line Let the positions of the bodies be given by xn 

= xn(t), with n = 0 ,  1 ,  2 ,  , and let Nn 

be the mass of the nth parti
le. Furthermore, let the for
e law for the spring b e t w een parti
les 

is positive when the spring is under tension 2 

for
e = fn+ (:x),  where :x is the distan
e n and n  1  b e given by: b e t w een the parti
les, and 

fn+ �

� 

If there are no other for
es involved (e g no fri
tion), the governing equations for the system are: 

d2 

(xn 

- xn-1) ,xn 

= fn+ 

� (xn+1 

- xn) - fn-
Nn 

(2 1)  

dt2
� 

�� 

for n = 0 ,  1 ,  2 ,  The simplest solution for this system of equations is equilibrium In this 


ase all the a

elerations vanish, so that the parti
le positions are given by the series of algebrai
 

1
By some devi
e: say the bodies are sliding inside a hollow tube.   

2
If the spring obeys Hooke's law, then f

n+
�

�

( x  k  

n  +
�  x L  

�
n  +

�  

�

, where k
n+

�

� 

> 0 and L
n+

�

� 

> 0 are the 

spring 
onstant and equilibrium length, respe
tively. 

.

.

; : : :

; : : :
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equations 

0 = f n + 

� ( x n +1 

- xn) - f n-
� (xn 

- xn-1) (2 2) 

�	 � 

This is the basi
 
onfguration (solution) that we will use in obtaining a 
ontinuum approximation 

Note that this is a one parameter family: if the for
es are monotone fun
tions of the displa
ements 

:x, then on
e any one of them is given, the others follow from (2 2) 

Before pro
eeding any further, it is a good idea to non-dimensionalize the equations. \e will 

assume that: 

A.	 All the springs are roughly similar, so that we 
an talk of a typi
al spring for
e f , and a typi
al 

spring length L Thus we 
an write   
: x 

� � 

� 

+ 

� L
f n+ 

(:x) = f F n 

,	 (2 3) 

�where Fn+ 

is a non-dimensional mathemati
al fun
tion, of 0(1) size, and with 0(1) deriva-
� 

�tives A further assumption is that Fn+ 


hanges slowly with n, so that two nearby springs 

�

are nearly equal Mathemati
ally, this is spe
ifed by stating that: 

Fn+ 

(T) = F ( ( n  1 / 2), T ) , (2 4)� 

� 

where 0    1, and F is a "ni
e" (mathemati
al) fun
tion of its two variables 

B.	 All the parti
les have roughly the same mass m, and their masses 
hange slowly 

with n, so that we 
an write: 

Nn 

= m N  ( n  )  ,  (2 5) 

where N is a ni
e mathemati
al fun
tion, with 0(1) size, and with 0(1) derivatives 

Remark 2.1 Why do we need these assumptions? This has to do with the questions of validity, 

dis
ussed in the introdu
tion. Suppose that these hypothesis are violated, with the masses and 

springs jumping wildly in 
hara
teristi
s. Then the basi
 
onfguration des
ribed by (2.2) will still 

be a solution. However, as soon as there is any signif
ant motion, neighboring parts of the 
hain 

will respond very diferently, and the solution will move away from the lo
al equilibrium implied by 

(2.2). There is no known method to, generi
ally, deal with these sort of problems - whi
h turn out 

to be very important: see remark 2.2. 

From the assumptions in A and B above, we see that: 

Changes in the mass-spring system o

ur over length s
ales £ = L/  (2 6) 

Using this s
ale to non-dimensionalize spa
e, namely: xn 

= £  n  

,  and a yet to b e spe
ifed time 

s
ale T to non-dimensionalize time, namely: t = T  ,  the equations be
ome: 

2 

      
d2  f 	 T  n  +1 

- n  n 

- n-1
N( n)  n 

= F - F 

�	 (2 7)n +	 n-d 2 m L
�

�  �  

A and B above also imply that, for the solution in (2 2), the inter-parti
le distan
e xn+1 

- xn 

varies 

slowly - an 0 ( ) fra
tional amount per step in n Thus we propose solutions for (2 7) of the form:

 n(t) =  ( s n 

, t ) , where sn 

= n , (2 8) 

and  =  (s, t) is some smooth fun
tion of its arguments 

:

+ 1

:

n � ;

.

.
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Substituting (2 8) into (2 7), and using (2 4) and (2 5), we obtain 

� � � � 

�2  2 f T 2 

  �
N  =

 �
(s)

2
 s,

 

 F    0  2 (  

 )  (2 9)
�  m L �  s

 

 s �  

Here we have used that: 

 n+1 

 n 

�
=

 1- 1
  (s  

  n  n � 1
   , t) 0( 2 ) and  

 

 

- -  

=
 

(s  , t) 0( 2 ) ,
 �

 

 2
     

 s 2
    

� s
  

 

-

with a similar formula applying  diferen
e F n �
+

Fn �
 to the  

-
 

� 

-
� 

Equation (2 9) suggests that we should take 

T =

f
m L 

  

2
, (2 10)

  f 

for the un-spe
ifed time s
ale in (2 7) Then equation (2 9) leads to the 
ontinuum limit ap-

proximations (valid for 0   1)  

 

�2 � �
N(s)  =

 

� 2
 F 

�
s,  

�
 (2 11)

 �s �s 

The mass-spring system introdu
ed in equation (2 1) 
an b e thought of as a simple model for an 

elasti
 rod under (only) longitudinal for
es Then we see that (2 11) is a model (nonlinear wave) 

equation for the longitudinal vibrations of an elasti
 rod, with s a lagrangian 
oordinate 

for the points in the rod, N = N(s) the mass density along the rod, and  giving the position of 

the point s as a fun
tion of time, and F a fun
tion 
hara
terizing the elasti
 response of the rod 

Of 
ourse, in pra
ti
e F must b e obtained from laboratory measurements 

Remark 2.2 The way in whi
h the equations for nonlinear elasti
ity 
an be derived for a 
rystalline 

solid is not too diferent! 

    from the derivation of the wave equation (2.11) for longitudinal vibrations. 

Then a very important question arises (see frst paragraph in se
tion 1): What important behaviors 

are missed due to the assumptions in the derivation? How 
an they be modeled? In parti
ular, 

what happens if there are "defe
ts" in the 
rystal stru
ture (see remark 2.1)? These are all very 

important, and open, problems of 
urrent resear
h interest. 

Example 2.1 Uniform Rod. 

If all the springs and all the parti
les are equal, then we 
an take N 1 and F is indep  endent of 

s. Furthermore, if we take L to be the (
ommon) equilibrium length of the springs, we then have 

�  

 =  

� �
 

� 

�2 

�
� 2

 

2
� �

F = 

 

 

2
  (2 12)

� 
 

 �s �s �s �s2 

where 
2 = 
2(T) = dF/dT(T) > 0, and F (1) = 0 (equilibrium length). The unperturbed "rod" 
or­

responds to  s, while  ( s   
orr esponds to the rod under uniform tension (( > 1 ), or 
om­

pression (( 1 ). Also, note that 
 is a (non­dimensional) speed - the speed at whi
h elasti
 

disturban
es along the rod propagate: i.e. the sound speed. 

3
At least qualitatively, though it is te
hni
ally far more 
hallenging. 

 , 

X
�

X + � :

X X

�
X + (�

X X

�
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�

< ��
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Example 2.2 Small Disturban
es. 

Consider a uniform rod in a situation where the departures from uniform equilibrium are small. 

That is � /�s � (, where ( is a 
onstant. Then equation (2.12) 
an be approximated by the 

linear wave equation

  =  
  

2
  , (2 13) 

where 
 = 
(() is a 
onstant. The general solution to this equation has the form 

= g(s - 
 ) h ( s 
 ) , (2 14) 

where g and h are arbitrary fun
tions. This solution 
learly shows that 
 is the wave propagation 

velo
ity. 

Remark 2.3 Fast vibrations. 

The vibration frequen
y for a typi
al mass m, atta
hed to a typi
al spring in the 
hain, is: 

f 

f 1
w = = (2 15) 

m L  

This 
orresponds to a time s
ale mu
h shorter than the one involved in the solution in (2.8-2.11). 

What role do the motions in these s
ales play in the behavior of the solutions of (2.1), under the 

assumptions made earlier in A and B? 

For real 
rystal latti
es, whi
h are defnitely not one dimensional (as the one in (2.1)) these fast time 

s
ales 
orrespond to thermal energy (energy stored in the lo
al vibrations of the atoms, relative to 

their equilibrium positions). It is believed that the nonlinearities in the latti
e a
t so as to randomize 

these vibrations, so that the energy they 
ontain propagates as heat (difuses). In one dimension, 

however, this does not generally happen, with the vibrations remaining 
oherent enough to propagate 

with a strong wave 
omponent. The a
tual pro
esses involved are very poorly understood, and the 

statements just made result, mainly, from numeri
al experiments with nonlinear latti
es. 

Just to be a bit more pre
ise: 
onsider the situation where all the masses are equal - Nn 

= m 

for all n, and all the springs are equal and satisfy Hooke's law (linear elasti
ity): 

: x 

� 

� L 

f n+ 

(:x) = k (:x - L) = f - 1 , (2 16) 

where k is the spring 
onstant, L is the equilibrium length, and f = k L Then equation (2.1) takes 

the form 

d2 

xn 

= w2 (xn+1 

- 2xn 

xn-1) , (2 17)
dt2 

where w is as in (2.15). Be
ause this system is linear, we 
an write its general solution as a linear 

superposition of eigenmodes, whi
h are solutions of the form4 

 
xn 

= exp( n  -  a t  )  ,  where a = 2 w sin and -   is a 
onstant. (2 18)
2 

These must be added to an equilibrium solution xn 

= ( L n = s n 

, where ( > 0 is a 
onstant. 

Che
k that these are solutions. 

4

X X

X +

��

� �

:

+

i � n �
� �
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Relative to the mean position sn 

along the latti
e, ea
h solution in (2.18) 
an be written as 

xn 

= exp( s n 

- t )
(L  

Thus we see that it represents a wave of wavelength A = 2 1(L/ , and speed 

(La  2  (Lw  2
 


w 

= = sin = sin (2 19)
2 2 

propagating along the latti
e - where 
 = (Lw  is a speed. Note that the speed of propagation is a 

fun
tion of the wave­length - this phenomenon is know by the name of dispersion. We also note 

that the maximum frequen
y these eigenmodes 
an have is a = 2 w , and 
orresponds to wavelengths 

of the order of the latti
e separation.5 

In the 
ase of equations (2.16 - 2.17) there is no intrinsi
 in the equations: it must arise from the 

initial 
onditions. That is to say: assume that the wavelength £ with whi
h the latti
e is ex
ited is 

mu
h larger than the latti
e e quilibrium separation L, i.e. £ � L, with = L/£. This 
orresponds to 

solutions (2.18) with small. In this long wave limit we see that (2.1g) implies that the solutions 

have the same wave speed 
w 

= 
. This 
orresponds to the situation in (2.13 - 2.14). 

It is 
lear that, in the linear latti
e situation des
ribed above, we 
annot dismiss the fast vibration 

ex
itations (with frequen
ies of the order of w) as 
onstituting some sort of energy "bath" to be 

interpreted as heat. The energy in these vibrations propagates as waves through the media, with 

speeds whi
h are of the same order of magnitude as the sound waves equation (2.13) des
ribes. 

Before the advent of 
omputers it was believed that nonlinearity would destroy the 
oheren
e of 

these fast vibrations. Numeri
al experiments, however, have shown that this is not (generally) true 

for one dimensional latti
es,6 though it seems to be true in higher dimensions. Exa
tly why, and 

how, this happens is a subje
t of some 
urrent interest. 

Transversal Motion. 

\e 
onsider now a slightly diferent situation, in whi
h the masses are allowed to move only in 

the dire
tion perpendi
ular to the x axis To b e pre
ise: 
onsider a sequen
e of masses Nn 

in 

the plane, whose x 
oordinates are given by xn 

= n L . Ea
h mass is restri
ted to move only in the 

orthogonal 
oordinate dire
tion, with Yn 

= Yn(t) giving its Y position. The masses are 
onne
ted by J
L2  ( Y - Yn)2 

n +1springs, with f (:r ) the for
e law, where :r is the distan
e b e t=  w een�

� 

�

� 

2d

�

� 

masses. Assuming that there are no other for
es involved, the governing equations for the system 

are: 

Yn+1 

- Yn 

Yn 

- Yn-1 

n+ n+ n+

Nn 

Yn 

f (:r )  f (:r ) , (2 20) =  

� n+ � � n-
�- n+ n-dt2 :r :r�� ��

n+ �

� 

n-
�

� 

for n = 0 , 1 , 2 (you should 
onvin
e yourself that this is the 
ase).  

The simplest solution for this system of equations is equilibrium, with all the masses lined up  

horizontally Yn+1 

= Yn, so that all the a

elerations vanish. Again, one 
an use this (one 

parameter) family of solutions to obtain a 
ontinuum approximation for the system in (2 20) -

under the same assumptions earlier in A and B 

5
The reason for the 2 relative to (2.15 is that the masses are 
oupled, and not atta
hed to a single spring. 

6
The frst observation of this general phenomena was reported by  .  ermi, J. Pasta and S. Ulam, in 1955: Studies 

of Non Lineam Pmoblems, Los Alamos Report LA-1940 (1955 , pp. 978-988 in Colle
ted Papers of Enri
o Fermi. I I, 

The University of Chi
ago Press, Chi
ago, (1965 . 

i
�

i � :

�
�

�

�
�
�

�

�
�
�

�

�

�

�
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� �
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Remark 2.4 Stability of the Equilibrium Solutions. 

It should be intuitively obvious that the equilibrium solutions des
ribed a b ove will be stable only if the 

�

� 

equilibrium lengths of the springs £ are smaller than the horizontal separation L b e t w een the masses, n+

namely: £ This so that none of the springs is under 
ompression in the solution, sin
e any 

mass in a situation where its springs are under 
ompression will easily "pop" out of alignment with 

the others - see example 2.3. 

Introdu
e now the non-dimensional variables } = /L , = x/L (note that, sin
e xn 

= , in 

fa
t plays here the same role that s played in the prior derivation7), and = t/T , where T is as 

in (2 10) Then the 
ontinuum limit for the equations in (2.20) is given by 

�2} � F (  S ) �} 

N( ) = (2 21)
� 2 � S � 

where } = } (  ) and   2  �}  S = 1 
� 

The derivation of this equation is left as an exer
ise to the reader. 

The mass-spring system introdu
ed in (2 20) 
an b e thought of as a simple model for an elasti
 

string restri
ted to move in the transversal dire
tion only Then we see that (2 21) is a model 

(nonlinear wave) equation for the transversal vibrations of a string, where is the 

longitudinal 
oordinate along the string position, } is the transversal 
oordinate, N = N( ) is 

the mass density along the string, and F = F (  S ) des
ribes the elasti
 properties of the string s In 

the non-dimensional 
oordinates, the (lo
al) equilibrium length for the string is given by ee 

= £/L 

That is, the elasti
 for
es vanish for this length: 

F ( e e( )) 0 , where ee 

1 (for stability, see remark 2 4) (2 22) 

�

�

.  n+

� 

\e also assume that  S ) > 0 

�S
F (

Example 2.3 Uniform String with Small Disturban
es. 

Consider now a uniform string (neither N , nor F , depend on ) in a situation where the departures 

from equilibrium are small (�}/� is small).  

For a uniform string we 
an assume N 1, and F is independent of . Thus equation (2.21)  

redu
es to  

�2} � F ( S ) �} 

= (2 23)
� 2 � S � 

Next, for small disturban
es we have S 1, and (2.23) 
an be approximated by the linear wave 

equation 

} = 
 

2 }  ,  (2 24) 

where 
2 = F (1) is a 
onstant (see equations (2.13 - 2.14). 

The 
oordinate s is simply a label for the masses. Sin
e in this 
ase the masses do not move horizontally, X 
an 

be used as the label. 

8
Noti
e that S is the lo
al stret
hing of the string, due to its in
lination relative to the horizontal position (a
tual 

length divided by horizontal length . 

7

< L

� y X � nL

X T

X

 
X;

!

X; T  !

X

X

X;

.

X; X � <
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Noti
e how the stability 
ondition ee 

1 in (2.22) guarantees that 
2 > 0 in (2.23). If this were not 

the 
ase, instead of the linear wave equation, the linearized equation would have been of the form 

} d 

2 } = 0 , (2 25) 

with d > 0 . This is Lapla
e Equation, whi
h is ill-posed as an evolution in time problem. 

To see this, it is enough to noti
e that (2.25) has the following solutions: 

d  k t} = e sin(k ) , for any - k (2 26) 

These solutions grow arbitrarily fast in time, the fastest the shortest the wave­length ((k( larger). 

This is just the mathemati
al form of the obvious physi
al fa
t that a straight string (with no bending 

strength) is not a very stable obje
t when under 
ompression. 

General Motion: Strings and Rods. 

If no restri
tions to longitudinal (as in (2 1)) or transversal (as in (2 20)) motion are imposed on the 

mass-spring 
hain, then (in the 
ontinuum limit) general equations in
luding both longitudinal and 

transversal modes of vibration for a string are obtained Sin
e strings have no bending strength, 

these equations will be well behaved only as long as the string is under tension everywhere 

Bending strength is easily in
orporated into the mass-spring 
hain model Basi
ally, what we need 

to do is to in
orporate, at the lo
ation of ea
h mass point, a bending spring These springs apply 

a torque when their ends are b e n t, and will exert a for
e when-ever the 
hain is not straight The 


ontinuum limit of a model like this will be equations des
ribing the vibrations of a rod 

\e will not develop these model equations here 

3 Torsion Coupled Pendulums: Sine-Gordon Equation. 

Consider an horizontal axle A, of total length £, suspended at its ends by "fri
tionless" bearings. Along 

this axle, at equally spa
ed intervals, there are N equal pendulums. Ea
h pendulum 
onsists of a rigid 

rod, atta
hed perpendi
ularly to the axle, with a mass at the end When at rest, all the pendulums 

point down the verti
al. \e now make the following assumptions and approximations: 

N 

• 1. Ea
h pendulum has a mass The distan
e from its 
enter of mass to the axle 
enter is L 

N 

• 2. The axle A is free to rotate, and we 
an ignore any fri
tional for
es (i e : they are small) In 

fa
t, the only for
es that we will 
onsider are gravity, and the torsional for
es indu
ed on the 

axle when the pendulums are not all aligned 

• 3. Any deformations to the axle and rod shapes are small enough that we 
an ignore them Thus 

the axle and rod are assumed straight at all times 

• 4. The mass of the axle is small 
ompared to N , s o w e ignore it (this assumption is not stri
tly 

needed, but we make i t t o k eep matters simple) 

Our aim is to produ
e a 
ontinuum approximation for this system, as N   , with everything else fxed. 

<

TT XX

�1 < k <1 :
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Ea
h one of the pendulums 
an be 
hara
terized by the angle en 

= en(t) that its suspending 

rod makes with the verti
al dire
tion. Ea
h pendulum is then subje
t to three for
es: 

(a) Gravity, for whi
h only the 
omponent perpendi
ular to the pendulum rod is 
onsidered 9 

(b) Axle torsional for
e due to the twist en+1 

- en 

This 
ouples ea
h pendulum to the next one 

(
) Axle torsional for
e due to the twist en 

- en-1 

This 
ouples ea
h pendulum to the prior one 

\e will assume that the amount of twist per unit length in the axle is small, so that Hooke's law applies. 

Remark 3.1 Hooke's Law for Torsional For
es. 

In the Hooke's law regime, for a given fxed bar, the torque generated is dire
tly proportional to the 

angle of twist, and inversely proportional to the distan
e over whi
h the twist o

urs. 

To be spe
if
: in the problem here, imagine that a se
tion of length :£ of the axle has been twisted 

by an amount (angle) \. Then, if is the torque generated by this twist, one 
an write 

\ 

= , (3 1) 

:£ 

where is a 
onstant that depends on the axle material and the area of its 
ross­se
tion - assume 

that the axle is an homogeneous 
ylinder. The dimensions of are given by: 

mass x length! for
e x area 

[  =  = (3 2)
time2 x angle angle 

This torque then translates onto a tangential for
e of magnitude F = L , on a mass atta
hed to

the axle at a distan
e L. The sign of the for
e is su
h that it opposes the twist. 

Let us now go ba
k to our problem, and write the equations of motion for the N pendulums \e 

will assume that: 

£ 

• The horizontal separation b e t w een pendulums is . 

N  

£ 

• The frst and last pendulum are at a distan
e from the respe
tive ends of the axle. 

2(N ) 

The tangential for
e (perpendi
ular to the pendulum rod) due to gravity o n ea
h of the masses is 

1 

Fg 

= - Ng sin en 

, where n = 1 , N (3 3)
N 

For any t w o su

essive masses, there is also a torque whenever en  = en+1 

This is generated by the 

twist in the axle, of magnitude en+1 

- en, o v er the segment of length £/(N 1) 
onne
ting the two 

rods Thus ea
h of the masses experien
es a for
e (equal in magnitude and opposite in sign) 

F = (N ) (en+1 

- en) , (3 4)
£L 

where the signs are su
h that the for
es tend to make en 

= en+1 

Putting all this together, we obtain 

the following set of equations for the angles: 

1 d 

2 e 1 (N )
NL 

1 

= - Ng sin e1 

(e2 

- e1) , (3 5)
N dt2 N £L 

The 
omponent along the rod is balan
ed by the rod itself, whi
h w e approximate as being rigid. 

9

T

T
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1 d 

2 e n 

1 

NL = - Ng sin en 

N dt2 N 

(N ) (N  1)
(en+1 

- en) - (en 

- en-1) , (3 6)
£L £L 

for n = 2 , , N - 1 , and 

1 d 

2 e N 

1 (N )
NL = - Ng sin eN 

- (eN 

- eN-1) (3 7)
N dt2 N £L 

These are the equations for N torsion 
oupled equal pendulums. 

Remark 3.2 To 
he
k that the signs for the torsion for
es sele
ted in these equations are 
orre
t, 

take the diferen
e between the n 

th and (n ) 

th equation. Then you should see that the torsion 

for
e (due to the portion of the axle 
onne
ting the n 

th and (n ) 

th pendulums) is a
ting so as to 

make the angles equal. 

Remark 3.3 Note that the equations for the frst and last angle are diferent, be
ause the frst and 

last pendulum experien
e a torsion for
e from only one side. How would you modify these 

equations to a

ount for having one (or both) ends of the axle fxed? 

Continuum Limit. 

Now w e 
onsider the 
ontinuum limit, in whi
h w e let N and assume that the n 

th angle 


an b e written in the form: 

en(t) = e ( x n 

, t ) , (3 8) 

1 n 

where e = e(x, t) is a �ni
e" fun
tion (with derivatives) and xn 

= 

2 £ is the position of the 

N  1 

pendulum along the axle In parti
ular, note that: 

£ 

:x = xn+1 

- xn 

= (3 9)
N  1 

Take equation (3 6), and multiply it by N /£ Then we obtain 

d 

2 e N(N )
p L 

n 

= -p g sin en 

( e n 

- 2en 

en-1) ,
dt2 £ 

2 L 

+1 

where p = N /£ is the mass density p e r unit length in the N limit Using equation 

(3 9), this 
an b e written in the form: 

d 

2 e n 

N e n +1 

- 2en 

en-1 

p L = -p g sin en 

(3 10)
dt2 (N ) L (:x)2 

From equation (3 8) we see that - in the limit N (where : 0) - w e have: 

�2 en+1 

- 2en 

en-1 

e 

( x , t )
(:x)2 �x 

2 

n 

+
+ 1 � + 1 �

+ 1 �
:

+ 1

+ 1

!1

+

+ 1

+ 1

+
+ 1

+

!1

+
+ 1

� +

!1 !

+
! :

:

�

:
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Thus, fnally, we  obtain (for the 
ontinuum limit) the nonlinear wave equation (the "Sine-Gordon" 

equation): 

e 2 2 

tt       

 


 exx w e-
 

= sin , (3 11)-
 

 
where w = 

I 

g 

is
L

 the pendulum angular frequen
y, and 
 = 

f
pL2

is a wave propagation speed 

 

 

(
he
k that the dimensions are 
orre
t). 

Remark 3.4 Boundary Conditions. 

What happens with the frst (3.5) and last (3.7) equations in the limit N    

As above, multiply (3.5) by 1/£. Then the equation be
omes: 

p L d2 

 e 1 p g 

 

(N ) 
=

 p g  e2 e1
2

 sin e1  ( e 2 e1
2

 

  

) =
 

 sin   
dt N

 e
 

1
N

 

-
 

 

-
N £  

 L 

- -
 £L :x 

Thus, as N one obtains    

ex(0, t ) = 0  

This is just the statement that there are no torsion for
es at the x = 0 end (sin
e the axle is free to 

rotate there). Similarly, one obtains: 

ex(£, t) = 0 , 

at the other end of the axle. How would these boundary 
onditions b e modifed if the axle 

where fxed at one (or both) ends? 

Kinks and Breathers for the Sine Gordon Equation. 

Equation (3 11), whose non-dimensional form is 

ett 

exx-
 

= sin-  e , (3 12) 

has a rather interesting history  Its frst appearan
e is not in the 
ontext of a physi
al 
ontext at all, 

but in the study of the geometry of surfa
es with 
onstant negative Gaussian 
urvature Physi
al 

problems for whi
h it has been used in
lude: Josephson jun
tion transmission lines, dislo
ation in 


rystals, propagation in ferromagneti
 materials of waves 
arrying rotations in the magnetization 

dire
tion, et
 10 

 Mathemati
ally, i t i s a very  interesting be
ause it is one of the few physi
ally 

important nonlinear partial diferential equations that 
an b e solved expli
itly (by a 

te
hnique known as Inverse S
attering, whi
h we will not des
ribe here) 

An important 
onsequen
e of equation (3 12) exa
t solvability, is that it possesses parti
le-like 

solutions, known as kinks, anti-kinks, and breathers. These are lo
alized traveling distur-

ban
es, whi
h preserve their identity when they intera
t In fa
t, the only efe
t of an intera
tion 

is a phase shift in the parti
le positions after the intera
tion: efe
tively, the "parti
les" approa
h 

ea
h other, stay together briefy while they intera
t (this 
auses the "phase shift") and then depart, 

preserving their identities and original velo
ities This 
an all b e shown analyti
ally, but here we 

will only illustrate the pro
ess, using some 
omputational examples 

1O 

 or reviews see: 

A. C. S
ott, 1970, A
tive and Nonlineam Wave Pmopagation in Ele
tmoni
s, Wiley Inters
ien
e, New York (page 250 . 

Barone, A.  .  sposito, C. J. Magee, and A. C. S
ott, 1971, Theomy and Appli
ations of the Sine Gomdon Equation, 

    ���� �Rivista del Nuovo Cimento  , pp. 227�267. 

�

!1

+
+ 1 �

+
�

!1

:
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The frst step is to present analyti
al expressions for the various parti
le-like solutions of 

equation (3 12) These turn out to be relatively simple to write 

Example 3.1 Kinks and Anti-Kinks. 

Equation (3.12) has some interesting solutions, that 
orrespond to giving the pendulums a full 21 

twist (e.g.: take one end pendulum, and give it a full 21 rotation). This generates a 21 twist wave 

that propagates along the pendulum 
hain. These waves are known as kinks or anti­kinks (depending 

on the sign of the rotation), and 
an be written expli
itly. In fa
t, they are steady wave solutions,11 

for whi
h the equation redu
es to an D.D.E., whi
h 
an be expli
itly solved. 

Let -1 1 b e a 
 onstant (kink, or anti­kink speed), and let z = ( x -  x ) b e a moving0 


oordinate, where the solution is steady - the "twist" will be 
entered at x = 
 t x , where x0 

is0 

the position at time t = 0 . Then the kink solution is given by 

e 

2    - 1 	  z
e = 2 ar

os = 4 ar
tan exp - ,	 (3 13)

2    e  	 ( 

where ( =
 

1 - 
2 is the kink width. This solution represents a propagating 
lo
k­wise 21 rotation, 

from e = 2 m 1 as x (where m is an integer) to e = 2 ( m - 1) 1 as x , with most of the 

rotation 
on
entrated in a region of width 0(() near x = 
 t x . The parameter 
 is determined 0 

(for example) by how fast the initial twist is introdu
ed when the kink is generated. 

We note now that: 

2 
 e 

• From (3.13) it follows that et 

= -
 e x 

= 

( 

sin . Using this, it is easy to show that (3.13) 

2 

is a solution of equation (3.12). 

•	 The Sine­Gordon equation is the simplest of a "
lass" of models proposed for nu
lear inter­

a
tions. In this interpretation, the kinks are nu
lear parti
les. Sin
e (in the non­dimensional 

version (3.12)) the speed o f light is 1, the restri
tion -1  
 1 is the relativisti
 restri
tion, 

and the fa
tor ( in
orporates the usual relativisti
 
ontra
tion. 

The anti-kink solution follows by repla
ing x x and t  -t in (3.13). It 
orresponds to a 

propagating 
ounter­
lo
k­wise 21 rotation, and it is given by 

1 - e 

2    	 z
e = 2 ar

os = 4 ar
tan exp	 (3 14)

2    1 e	 ( 

The kinks and anti­kinks are very non­linear solutions. Thus, it is of some interest to study how 

they intera
t with ea
h other. Be
ause they are very lo
alized solutions (non­trivial only in a small 

region), when their 
enters are far enough they 
an be added. Thus, numeri
ally it is rather easy to 

study their intera
tions, by setting up initial 
onditions that 
orrespond to kinks and anti­kinks far 

enough that they do not initially intera
t. Then they are followed until they 
ollide. In the le
tures 

the results of numeri
al experiments of this type will be shown (the numeri
al method used in the 

experiments is is a "pseudo­spe
tral" method). 

11 

Solutions of the form ( ((x 
   , where 
 is a 
onstant: the speed of propagation. 

< c < � c t�
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!   !!
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Example 3.2 Breathers. 

A diferent kind of interesting solution is provided by the "breathers" - whi
h we handle next. A 

breather is a wave-pa
kage kind of solution (an os
illatory wave, with an envelope that limits 

the wave to reside in a bounded r e gion of spa
e. These solutions vanish (exponentially) as x . 

This last property allows for easy numeri
al simulations of intera
tions of breathers (and kinks). 

Dne 
an setup initial 
onditions 
orresponding to the intera
tion of as many kinks and/or breathers 

as one may wish (limited only be the numeri
al resolution of the 
omputation), simply by separating 

them in spa
e. 

A breather solution is 
hara
terized by two arbitrary 
onstants -1  d, V 1 . Then defne 

A 

B 

C 

p 

q 

Q 

= 

= 

= 

= 

= 

= 

d/ 1 - d2 , 

1/ 1 - V 2 , 

1 - d2 , 

C B ( V x - t t 0 

) , 

d B ( x - V t - x 0 

) , 

A sin(p)/ 
osh(q) ,

               
              

(3 15) 

where x0 

and t0 

are 
onstants, 
entering the envelope and the phase, respe
tively. Noti
e that the 

partial derivatives of Q (with respe
t to p and q) are given by 

Qp 

= A 
os(p)/ 
osh(q) and Qq 

= -Q tanh(q) (3 16) 

The breather solution (and its time derivative) is then given by: 

 
e = 4 ar
tan(Q) , 

  
(3 17) 

2 

  et 

= -4 (1 Q ) ( C B Q p 

d B V Q q 

)

The breather solution is a wave­pa
kage type of solution, with the phase 
ontrolled by p, and the 

envelope (
ausing the exponential vanishing of the solution) by q). The wave­pa
kage details are 

given by:  
speed . . . . . . . . . . . . . . 
 p 

= 1 /V , 

   
period . . . . . . . . . . . . . . p 

= 2 1/ ( B C ) , Phase. 

(3 18)   w ave-length . . . . . . . . . A p 

= 2 1/ ( B C V ) ,  
speed . . . . . . . . . . . . . . 
 = 

V , e Envelope. (3 19)
width . . . . . . . . . . . . . . 

A e 

= 2 1/ ( d B ) , 

Noti
e that, while the phase moves faster than the speed of "light" (i.e.: 1), the envelope always 

moves with a speed -1 1 , and has width proportional to 1 - V 2 . 

Finally, in 
ase you are familiar with the notion of group speed, noti
e that (for the linearized Sine­

Gordon equation: ett 

- exx 

e = 0 ) we have: (group speed) = 1/(phase speed) - whi
h is exa
tly 

the relationship satisfed by 
e 

= V and 
p 

= 1 /V for a breather. This is be
ause, for (x( large, the 

breathers must satisfy the linearized equation. Thus the envelope must move at the group velo
ity 


orresponding to the os
illations wave­length. 

! �1

< d <

p

p

p

+

:

+ + :

T

< V <
p

+
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Remark 3.5 Pseudo-spe
tral Numeri
al Method for the Sine-Gordon Equation. 

Here we will give a rough idea of a numeri
al method that 
an be used to solve the Sine­Gordon 

equation. This remark will only make sense to you if you have some familiarity with Fourier Series 

for periodi
 fun
tions. 

The basi
 idea in spe
tral methods is that the numeri
al diferentiation of a (smooth) periodi
 fun
­

tions 
an be done mu
h more eÆ
iently (and a

urately) on the "Fourier Side" - sin
e there it 

amounts to term by term multipli
ation of the nth 

 Fourier 
oeÆ
ient by  n. Dn the other hand, 

non­linear operations (su
h as 
al
ulating the square, point by point, of the solution) 
an be done 

eÆ
iently on the "Physi
al Side". 

Thus, in a numeri
al 
omputation using a pseudo­spe
tral method, all the operations involving taking 

derivatives are done using the Fourier Side, while all the non­linear operations are done dire
tly 

on the numeri
al solution. The ba
k­and­forth 
al
ulation of Fourier Series and their inverses is 


arried by the FFT (Fast Fourier Transform) algorithm - whi
h is a very eÆ
ient algorithm for 

doing Fourier 
al
ulations. 

Unfortunately, a naive implementation of a spe
tral s
heme to solve the Sine­Gordon equation would 

require periodi
 in spa
e, solutions. But we need t o be  able to solve for solutions that are mod-21 

periodi
 (su
h as the kinks and anti­kinks), sin
e the solutions to the equation are angles. Thus, 

we need to get around this problem. 

In a naive implementation of a spe
tral method, we would write the equation as 

ut 

= v , 

(3 20)
v

 

 t  

 

= u xx 

s nu ,-  

) 

where u = e and v = et. Next we would dis
retize spa
e using a periodi
 uniform mesh (with a large 

enough period), and would evaluate the right hand side using FFT's to 
al
ulate derivatives. This 

would redu
e the P.D.E. to some large D.D.E., involving all the values of the solution (and its time 

derivative) at the nodes in the spa
e grid. This D.D.E. 
ould then be solved using a standard D.D.E. 

®solver - say, ode45 in MATLAB.  

In order to use the idea a bove  in a way that allows us to solve the equation with mod­21 periodi
ity 

in spa
e, we need to be able to evaluate the derivative uxx  

 

in a way that ignores jumps by multiples 

of 21 in u. The following tri
k works in doing this: 

Introdu
e U = eiu : Then 

(U )2 U U 

 x - xx
uxx 

= (3 21)
U2 

gives a formula for uxx 

that ignores 21 jumps in u. Warning: In the a
tual implementation one 

must use 

(Ux)2 - U U 

uxx 

= -imag 

xx 

U2 

to avoid small imaginary parts in the answer (
aused by numeri
al errors). 

4 Suggested problems. 

A list of suggested problems that go along with these notes follow: 

i

 !
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1 Che
k the derivation of the system of equations (2 20) 

2 Derive the 
ontinuum equation in (2 21) 

3 Look at the end of se
tion 2, under the title "General Motion: String and Rods" Derive 


ontinuum equations des
ribing the motion (in the plane) of a string without 
onstraints 

4 Look at the end of se
tion 2, under the title "General Motion: String and Rods" Add bending 

springs to the model, and derive 
ontinuum equations des
ribing the motion (in the plane) of 

a rod without 
onstraints 

5 Do the 
he
k stated in remark 3 2 

6 Answer the question in remark 3 3 

7 Do the dimensions 
he
k stated below equation (3 11) 

8 Answer the question in remark 3 4 

9 Show that (3 13) is a solution (there is a hint about how to do this a few lines below the 

equation) 

10 Use a 
omputer to plot the solution in (3 13), as a fun
tion of z, for a few 
hoi
es of 
  

11 Show that (3 17) is a solution 

12 Use a 
omputer to plot the solution in (3 17), as a fun
tion of x, for various times and 
hoi
es 

of parameters 

13 Implement a numeri
al  
ode to 
al
ulate intera
tions of kinks, breathers, et
 , using the ideas 

sket
hed in remark 3 5 



MIT OpenCourseWare
http://ocw.mit.edu

18.311 Principles of Applied Mathematics
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

