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Abstra
t 

The purpose of these notes is to give some examples illustrating how naive numeri
al  approx-

imations to PDE's may not work at all as expe
ted. In addition, the following two important 

notions are introdu
ed: (I) von Neumann stability analysis  helps identify when (and 

if) numeri
al s
hemes behave properly. (II) Artif
ial vis
osity  a tool in stabilizing nu-

meri
al s
hemes. These notes should b e read in 
onjun
tion with the use of the -!4,!"  

s
ripts (in the Athena 18311-Toolkit at MIT) whose names end with the a
ronym GBNS (for 

Good-Bad-Numeri
al-S
hemes). 
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1 Naive S
heme for the Wave Equation. 

\e will illustrate the points we want to make with the wave equation (in one spa
e dimension) 

�2 u � 

2 u 

- = 0 . (1 1)
�t 

2 �x 

2 

Sin
e this equation is se
ond order in time, it needs two initial 
onditions For example: 

u(xT 0) = uo(x) and 

�u 

( xT 0) = vo(x) . (1 2)
�t 

\e will assume here that both uo 

and vo 

are periodi
, with some period T > 0 Then the solution 

of (1 1) is periodi
 in x with the same period: u(x + TT t ) = u ( xT t) 

Remark 1.1 We note that, in fa
t, we 
an write the solution of this problem expli
itly    
1 

l + 

u = uo(x - t) + u o 

( x + t ) + v o 

( s ) ds . 

2 l� 

However, this is not the point here (see below). 

Operate now as if (1 1) were 
ompli
ated enough that we needed to solve the equation numeri
ally 

For this purpose introdu
e a numeri
al grid {xnT t j} - where n and j are integers, as follows 

xn 

= xo 

+ n x and tj 

= j t . (1 3) 

Here  x and  t are some �small" positive 
onstants and xo 

is arbitrary Next repla
e the fun
tion 

u = u(xT t) o f t h e 
ontinuum variables x and t by a dis
rete double sequen
e {uj }, where n

uj = u(xnT t j 

) . (1 4)n 

�u
Finally, i n trodu
e the new variable v = 

t 

to re-write equation (1 1) as a frst order in time system 

� 

�u �v � 

2 u 

= v and = . (1 5)
�t �t �x 

2 

In view of (1 4) it is now 
lear that uj (and the similarly defned vj ) should satisfy n n

un
j+1 - uj vn

j+1 - vj u
j 

un
j + u

j 

n n n+1 

- 2 n�1 = vj + O( t) and = + O( tT ( x)2) T (1 6)n t  t ( x)2 

jwhi
h 
an be 
he
ked by expanding uj+1, u ,
 i 

n T a ylor series 
entered at (xnT t j) - using (1 4) n n+1

- and substituting the expansions in (1 6) This suggests the following numeri
al s
heme, allowing 

simple 
al
ulation of the solution at time t = tj+1 

(on
e it is known at time t = tj) 

( )
uj+1 j vj+1 

 t j j 

n 

= uj
n 

+  t v n 

and n 

= vn
j + un+1 

- 2uj
n 

+ un�1 T (1 7)
( x)2 

where the errors should be of size O( tT ( x)2), that is: small 

Upon implementation one qui
kly dis
overs that this algorithm is disastrously bad. The MATLAB
s
ripts: InitGBNS, le
tureGBNS, demoGBNS, movieGBNS and the help fle readmeGBNS in the Athena 

18311-Toolkit all deal with this s
heme and another one to b e introdu
ed later in these notes In 

parti
ular, le
tureGBNS goes through and explains a series of 
al
ulations showing the details of 

how the s
heme fails \e illustrate here the problem with a 
ouple of examples 

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

-!4,!"
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Example 1.1 Consider the following initial data (with period T = 2 ) for equation (1.5): 

u(xT 0) = uo(x) = 

1 

2 

(1 + 
os(J x )) and v(xT 0) = vo(x)  0 . (1 8) 

1 1 

The exa
t solution: u = (2 + 
os(J (x - t)) + 
os(J(x + t))) = (1 + 
os(J x ) 
os(J t )) - see 

4 2 

remark 1.1 - is 
learly also periodi
 in time of period 2 (a standing wave). For the numeri
al 

solution we take x = 2 t = 2 N (for some (large" N) and xo 

= -1 in (1.3). Then we im­

plement (1.7) for 1 : n : N (the periodi
ity of the solution means that the indexes n + N and n 

are equivalent) and solve the equations over one time period: 0 : t : 2. 

Numerical solution u with N = 40 points 

1.5 

1 

0.5 

0 

-0.5
 
2
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1 

1.5 1 

Time t --- dt=1/N. -1 
Space x --- dx=2/N. 

Figure 1 1: Solution of (1.5) with initial data (1.8) using (1.7) with 40 points in the 

spa
e grid. To avoid an over-dense graph not all the points in the numeri
al grid are 

plotted. However, enough points to show all the relevant details are kept. 

S
ol

ut
io

n 
u 

= 
u(

x,
 t)

. 

Figure 1.1 shows the result of this 
al
ulation using N = 40 . Note that the periodi
ity in time fails 

to hold. In fa
t, after one time period the numeri
al method appears to have amplifed the initial 

� �



 

Numerical solution u with N = 57 points
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Figure 1 2: Solution of (1.5) with initial data (1.8) using (1.7) with 57 points in the 

spa
e grid. To avoid an over-dense graph not all the points in the numeri
al grid are 

plotted. However, enough points to show all the relevant details are kept. 
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data by about 30%! However, maybe this is not so bad (or is it?); after all the value of N being 

used is not that large and the numeri
al solution looks otherwise quite reasonable. 

Let us now 
he
k what happens as we in
rease the resolution (larger N). Any reasonable numeri
al 

s
heme ought to give a better approximation when we do this. Figure 1.2 shows the result of in­


reasing N to N = 57 (a rather small in
rease). The new approximation is not only not better; it 

is a disaster. By time t � 2, O(1) grid s
ale (i.e. wavelength = 2  �x ) os
illations appear in the 

numeri
al solution, making it useless. As we will soon see, the s
heme is amplifying the errors; the 

30% amplif
ation of the initial 
osine wave seen when using N = 40 was just a forewarning of what 

happens for larger N . As N is made even larger, the os
illations generated be
ome huge (in fa
t, 

their size in
reases exponentially with N , as we will soon show). This is illustrated by fgure 1.3, 

whi
h 
orresponds to N = 80 . Here (instead of a 3D graph) we plot the numeri
al solution at time 

t = 2 . Grid s
ale (wavelength = 2 x ) os
illations is all that 
an be s e en in this graph - noti
e the 

(very large) verti
al s
ale on this fgure! 

= 2�



Numerical solution u with N = 80 pointsx 10
7 

1 

0 

Space x --- dx=2/N. Solution for time t = 2 

Figure 1 3: Solution of (1.5) with initial data (1.8) using (1.7) with 80 points 

in the spa
e grid. Noti
e the large amplitude grid s
ale os
illations generated by 

the s
heme. There is nothing but numeri
al noise in this pi
ture! 
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Finally, we point out that if (instead of in
reasing N ) we 
ompute for longer times, the same efe
t 

of large amplitude grid s
ale os
illations arising (whi
h grow exponentially in time) is observed. 

Example 1.2 In a se
ond example we take the following Gaussian initial data for equation (1.5) 

u(xT 0) = uo(x) = exp(-a ln(10) x 

2) and v(xT 0) = vo(x) 0 T (1 9) 

for -1 : x : 1, where a > 0 is a 
onstant. We extend this to periodi
 initial data (of period T = 2 ) 

by repeating the above profles over ea
h interval (2n - 1) : x : (2n + 1) , with n integer. These 

initial values are not smooth - as were the ones in the prior example. There is a small 
orner in 

uo(x), whenever x is an odd integer (in parti
ular for x = ±1). This is be
ause at these points there 

is a 
ut­of from a Gaussian 
entered at x - 1 to one 
entered at x + 1 . Noti
e that the size of the 

miss­mat
h in the derivatives of uo 

goes down very rapidly as a in
reases. 

�



Numerical solution u with a = 10. 
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Figure 1 4: Solution of (1.5) with initial data (1.9) using (1.7) with 100 points in 

the spa
e grid and a = 10 . T o avoid an over-dense graph not all the points in the 

numeri
al grid are plotted (enough points to show all the relevant details are kept). 

S
ol

ut
io

n 
u 

= 
u(

x,
 t)

. 
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For the numeri
al solution we take xo = 

 

-1,  �x = 0 . 02 and  �t = 0. 01  in (1.3) - this 
orresponds 

to N = 100 in the notation of example 1.1 - and use (1.7) to solve the equations for 0 : t : 0.5. 

This is very similar to what we did in the prior example, ex
ept that here we vary the initial 


onditions (by 
hanging the parameter a) instead of 
hanging the resolution with variations in N . 

In the frst 
al
ulation, we take a relatively large a, namely a = 10.  Figure 1.4 shows the result of 

this 
al
ulation, whi
h appears quite reasonable. 

In the se
ond 
al
ulation, we take a smaller value a = 6 . This makes the 
orners more substantial 

(though still pretty weak). Figure 1.5 shows the result of this last 
al
ulation, whi
h is now not 

reasonable at all. It is quite 
lear that, just as in the prior example, the small errors that are 

triggered by the 
orners are amplifed by the s
heme (so we observe grid s
ale os
illations near 

x = ±1 towards the end of the run). 

Finally, we point out that, if the 
al
ulations are run for times longer than 0 : t : 0.5, even the one 

with a = 10 eventually shows grid s
ale os
illations. These grow exponentially in time and pretty 

soon dominate the whole solution (not just the neighborhood of x = ±1) with huge amplitudes. 



 

  

S
ol

ut
io

n 
u 

= 
u(

x,
 t)

. 
Numerical solution u with a = 6. 
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Figure 1 5: Solution of (1.5) with initial data (1.9) using (1.7) with 100 points in 

the spa
e grid and a = 6 . T o avoid an over-dense graph not all the points in the 

numeri
al grid are plotted (enough points to show all the relevant details are kept). 
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The next se
tion gives a detailed explanation of why this is happening 

2 von Neumann stability analysis for PDE's. 

In this se
tion we introdu
e the von Neumann stability analysis te
hnique, that 
an b e used to 

analyze numeri
al s
hemes and predi
t when the behavior observed in the prior se
tion will o

ur 

There are two basi
 
on
epts useful in understanding numeri
al s
hemes These are the notions of 


onsisten
y and stability. For a numeri
al s
heme to b e useful it must b e both 
onsistent and 

stable It is very important to realize that these two notions are independent 

Consisten
y simply means that, as x and t vanish, the solutions of the equation must satisfy 

the numeri
al s
heme with errors that vanish This is in fa
t what equation (1 6) tells us about 

the s
heme in (1 7) Consisten
y guarantees that the s
heme truly approximates the equation we 

intend to solve with it (and not something else) 

� �
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Stability simply means that the s
heme does not amplify errors Obviously this is very important, 

sin
e errors are impossible to avoid in any numeri
al 
al
ulation In fa
t, even in the ideal 
ase 

of infnite pre
ision, we still have to deal with dis
retization errors - i e the O terms in (1 6) 

Clearly, if errors are amplifed, pretty soon they will dominate any 
omputation (making it useless) 

As it turns out, for linear 
onstant 
oeÆ
ient s
hemes su
h as (1.7), a 
omplete stability 

analysis is possible, be
ause the numeri
al algorithm equations 
an be solved exa
tly by separa-

tion of variables This means then that any solution of the s
heme 
an be written as a superposition 

of Fourier modes These Fourier modes are solutions of the form 

uj = U Gj n
n    n and vj = V Gj     

   n  

 

T (2 1)

where U , V , G and k are 
onstants (with k real) Generally double sequen
es like this will be solu-

tions provided G, U and V are restri
ted by some fun
tional relations of the form G = G(kT  �xT  �t),  

U  =  U  (k T  �xT  �t) and V = V (kT  �xT  �t) - below we  
arry through the 
al
ulations for the spe
if
 

example of (1 7) 

G is 
alled the Growth Fa
tor  It is 
lear that: 

for stability IGI : 1 is needed for all k. (2 2) 

Else some modes will b e amplifed by a fa
tor G in ea
h time step, eventually dominating the 

solution A s 
heme  is 
alled stable if the stability 
ondition IGI : 1 
an be satisfed with (perhaps) 

a restri
tion on the time step of the form 0 <  �t : T( x),  where T is a positive fun
tion of its 

argument Noti
e that restri
tions of this latter form allow arbitrarily small time and spa
e steps, 

whi
h are needed to b e able to 
ompute the solution with any required degree of a

ura
y (how 

small is determined by how well  
onsisten
y is satisfed, whi
h determines the size of the errors for 

any given � t and � x) 

Remark 2.1 The parameter k is the wavenumb er  of the mode, related to the wavelength A in 

spa
e1 by A = (2 J� x ) k. For the parti
ular 
ase of periodi
 problems (su
h as the ones 
onsid­

ered in examples 1.1 and 1.2), the Fourier modes (2.1) must also satisfy the periodi
ity 
ondition. 

That is, one must have A = T f , where f is an integer and T is the period in spa
e. Sin
e in this 


ase one would normally take � x = T N , where N is a large natural number, the a

eptable values 

for k end up restri
ted to the set 

2 J� x 2J T
k = kg = f

T
 = f

N
 

 

and A = Ag = T with 0 : 

 

f <
 f

 N . (2 3)

Here the upper bound N on f follows from the fa
t that kg 

and kg+N       

 

give the same Fourier mode in

(2.1); thus there is no reason to keep both. 

We note that (due to the fa
t that the numeri
al s
heme only samples the solution at a dis
rete set 

{xn} of points in spa
e) there is a 
ertain tri
kiness in the interpretation of the wavelengths 

Ag                

 

above. Clearly, f = 0 
orresponds to a solution independent of x and f = 1 
orresponds to the 

fundamental mode with wavelength T in x. As f 
ontinues to in
rease harmoni
s of this fundamental 

mode appear, with wavelengths T 2,  T 3 . . . However, this pro
ess 
annot 
ontinue forever, sin
e 

:
l Write � the argument : in the exponentials in (2.1) as :  (    ), using (1.3).

  
  



 

 

 � �
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the numeri
al grid 
annot resolve arbitrarily small wavelengths. In fa
t, the shortest wavelength that 


an b e resolved 
orresponds to f = N 2 with Ag 

= 2 x (grid size os
illations, with period 2 in n: the 

solution alternates between two values on the grid). To see this re
all that kg 

and kg+N 

give the same 

Fourier mode in (2.1). Thus the mode (N - f) has the same wavelength as the mode -f, i.e. T f . 

This means that, after f = N 2 the wavelengths start in
reasing, to rea
h ba
k the fundamental 

mode at f = N - 1. Ea
h wavelength then a
tually appears twi
e in the range 1 < f < N . 

We should not be t o o surprised by the fa
t that ea
h wavelength appears twi
e in the range 1 < f < N . 

Noti
e that the modes in (2.1) are 
omplex valued (ex
ept when k is a multiple of 2J). Thus, to be 

real valued any solution should in
lude both the modes and their 
omplex 
onjugates. However, the 

mode 
onjugate to the one with k = kg 

above in (2.3) is the mode with k = k , whi
h is pre
isely 

the same as the mode with k = kN�g. 

�g

In any numeri
al 
al
ulation it is the modes with wavelengths of the order of the grid size 

(i.e. f 
lose to N 2 ) that are worrisome in terms of instabilities. These modes 
annot be expe
ted 

to represent a

urately any true feature of the real solution one is trying to 
ompute2 and should 

not have any signif
ant presen
e in the numeri
al solution. Thus, it is very important that they 

not be amplifed by the s
heme. In fa
t, generally it is desirable to have them damped, sin
e they 

mostly represent numeri
al "noise" generated by all the approximations impli
it in any numeri
al 


al
ulation. 

On the other hand, the modes with wavelengths mu
h bigger than x (that is, f 0 or f N in 

(2.3)) should be treated "a

urately" by the s
heme. By this we mean that their time evolution 

(given by the fa
tors Gj in (2.1)) should be as 
lose as possible to the one provided b y the PDE the 

s
heme approximates. This is what 
onsisten
y is all about. 

Consider now the spe
ial 
ase of the algorithm (1.7). To see under whi
h 
onditions (2 1) 

nis a solution, substitute this form into (1 7) Dividing by the 
ommon fa
tor Gj it follows that 

t 

G U = U + t V and G V = V + ( - 2 + 

� ) U . 

( x)2 

Clearly an eigenvalue equation AY = G Y , with eigenvalue G, eigenve
tor Y = ( UT V )T and matrix 

of 
oeÆ
ients   
1 t 

A = 6 

. 

-4 sin2( ) 1
(6l)� 2

From the 
hara
teristi
 equation det(A -G) = 0, then 

t 1 

G = 1 ± 2  sin( k) . (2 4) 

x 2 

It is 
lear that, for (1.7) there is no stability, sin
e (2 4) yields 

IGI2 = 1 + 2 

t 

sin(
1 

k) 

2 

T (2 5) 

x 2 

whi
h is always bigger than one 

2 Re
all (1..), whi
h makes sense in terms of approximating the solution only if is mu
h smaller than any 

distan
e over whi
h the solution 
hanges signif
antly. 

x 

�

�

� � �

eik

eik e ik

�
t

�

�

�
�

�

�

�x

�

k
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Noti
e that the maximum amplif
ation  for the s
heme (1.7) o

urs - as follows from (2 5) 

- for k = J. This 
orresponds to f = N 2 in (2 3), i e : grid size os
illations with A = 2  �x . 

In this 
ase 

IGI = GM 

=
 

1 + 4 T T (2 6) 

where T = ( � t � x)2 . For j
 (1 7), the amplitude of the grid size os
illations grows like GM 

. Thus 

we 
an write for the amplif
ation fa
tor A2 = A2(t)  the 

 

(for period 2  �x mode) 

ln(GM)
A2  

 

= exp(t ) T (2 7)
 �t

 

 

where we h av e used j = t  �t  In parti
ular (in examples 1.1 and 1.2 earlier) we to  ok  � x = 2 � t 

and  �t = 1  =N , so that 

ln 2   

A = exp(
  

N t) = 2 �2     . 

 

(2 8)
2 

\e will now use these results to explain the behavior observed earlier in fgures 1 1 through 1 5 

Remark 2.2 Consider frst example 1.1, with the initial data for s
heme (1.7) given by 

o 1 2nJ
u

 

 o
n -  

 = 1 
os( ) and v = 0 .
2 

� 
  

N
 

 �
 n   

 

These data 
orrespond to a superposition of just three modes in (2.1), with k = ko, k = k1  

 

and

k = k
�1 r kN�             

 1 

in (2.3). Thus, the exa
t solution for the s
heme equations is rather simple

and has the form 

1
  

gj + ggj 2nJ
 !

j j 

uj  

(
 

 = 1- 
os ) and vj g - gg 2nJ J
 

n     n = vv 
os(
 

) T for g = 1 + i sin(
 

) T (2 9)
2 2 N 2 i 

 

N
       

N
  

 

where vv is a 
onstant and gg denotes the 
omplex 
onjugate of g. Of 
ourse, g and gg are the values 

G in (2.4) takes for k = k1 = 2 J N . 

 

Noti
e that the exa
t solution (2.9) does not exhibit any 
atastrophi
 growth of grid size os
illations, 

as was observed in example 1.1. However, the results displayed in fgures 1.1 through 1.3 do not 


orrespond to the exa
t solution above but to a
tual 
omputations  using the s
heme in (1.7) - whi
h 

were done using double pre
ision foating point arithmeti
 
( MATLAB

 default). The round of errors 

introdu
ed by the fnite pre
ision of the 
al
ulations introdu
es (very small) perturbations into the 

exa
t solution above, whi
h the s
heme then evolves in time just as if they were part  of the solution. 

To understand  what the s
heme does with the perturbations introdu
ed by the fnite pre
ision, de­


ompose them into a sum over the modes in (2.1). This sum will generally in
lude all the modes, 

in parti
ular the highly amplifed ones with grid size wavelengths.  Consider then what would happen 

with the solution of the s
heme if we add to the initial data above3 a small amount of the 
omponent 


orresponding to the maximum amplif
ation rate above in (2.6). Let the amplitude of this 
ompo­

nent be E, where E has (roughly) the size of the expe
ted errors. A
tually, E should be a little smaller 

than the round of errors that o

ur, sin
e not all the errors get proje
ted into the fastest growing 

modes. Thus �

 take E 17
 = O(10 ) as a g o o d ballpark fgure for the 
al
ulations  in se
tion 1 

and use (2.8) above to explain the behavior observed in fgures 1.1 through 1.3, as follows: 

3 Whi
h � has only 
omponents 
orresponding to e = 0, e = 1 and e = N  1 in (2.3). 



�

 
 

 
�

�

�

�

�

�

� �
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1.1 x 10121. First, for N = 40 , (2.8) gives A2 

for the fnal time t = 2 . This is not enough to 


ompensate for the smallness of E and the numeri
al solution is well des
ribed by (2.9). 

Noti
e that (2.9) is not periodi
 in time; sin
e the wave amplitude in u behaves like Re(gj), 

whi
h grows as j grows. In fa
t, 2 N = 80 steps are needed to rea
h the fnal time t = 2 and 

it is easy to 
he
k that  	  
So	

J 

So

Re(g ) = Re 1 + sin( ) 1.28 . 

40

This agrees quite well with the 30% growth in the wave amplitude observed in fgure 1.1. 

1.4 x 10172. Se
ond, for	 N = 57 , (2.8) gives A2 

for the fnal time t = 2 . This is about the 

same as E 

�1 and agrees with the fa
t that grid os
illations of O(1) amplitude are observed in 

fgure 1.2. 

3. Third, for N = 80 , (2.8) gives A2 

1.2 x 1024 for the fnal time t = 2 . This is about 107 

times bigger than E 

�1, whi
h (again) agrees pretty well with the observed amplitude of the grid 

size os
illations in fgure 1.3. 

4. Finally, it is not just the mode with f = N 2 in (2.3) that gets a large amplif
ation fa
tor by 

the s
heme. Al l the ones with f N 2 do and should thus be present in the solution. It is 

well known that when sinusoidals with 
lose wavenumbers are added, "beats" with wavenumbers 

equal to the diferen
e in wavenumbers o

ur. Thus, in this 
ase we should observe "beats" with 

wavenumbers low multiples of k1 

= 2 J N - whi
h, indeed, are quite obvious in fgure 1.3. 

Remark 2.3 Now 
onsider example 1.2, where N = 100 and 0 : t : 0.5. Then, for the time 

t = 0 . 5 , e quation (2.8) gives A2 

3.4 x 107 . 

In this 
ase the initial data has 
omponents in all the modes 0 : f < N in (2.3). In fa
t, be­


ause of the 
orners at x = ±1, the amplitude present in the higher modes is relatively large. The 

strength of these 
orners 
an be measured by the jump in the derivative of the initial data there: 

J(a) = 4 a ln(10) 10 

�a. For moderate4 size a, J(a) pretty mu
h determines how mu
h amplitude 

there is in the higher modes. Now J(10) 9.2 x 10 

�9 and J(6) 5.5 x 10 

�5. Thus, from the value 

of A2 

above, it should be 
lear why in fgure 1.4 (
orresponding to a = 10 ) the solution exhibits no 

dete
table os
illations, while in fgure 1.5 (
orresponding to a = 6 ) they show up. 

Noti
e that in this 
ase it is also true that it is not just the mode with f = N 2 in (2.3) that gets a 

large amplif
ation fa
tor by the s
heme. Al l the neighboring ones are also present. However, now 

their amplitudes and phases are all 
orrelated be
ause they (mostly) are generated by the 
orner in 

the initial data. Thus they interfere with ea
h other in ways subtler than the mere b e ating observed i n 

the prior example; i.e.: the pattern of grid size os
illations has a 
lear maximum near the positions 

of the 
orners in fgure 1.5. 

In the next se
tion we will dis
uss a simple strategy to stabilize numeri
al s
hemes, to get rid 

of numeri
al os
illations and other undesirable efe
ts The strategy is based on the introdu
tion 

of artif
ial (numeri
al) dissipation to (sele
tively) damp the higher modes, without signif
antly 

afe
ting the lower modes (where a 
onsistent s
heme should behave properly - see remark 2 4) 

4 When a is large, the 
orner is very weak and the dominant 
ontribution to the mode amplitudes 
omes from the 

smooth part of the initial data (whi
h yields very little amplitude in the high modes). 

�

�
i

�
�

�

�

�

�

� �

�
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Remark 2.4 Finally, going ba
k now to the last paragraph in remark 2.1, 
onsider the behavior of 

G in (2.4) for k small. Namely 

� t � t
G = 1

 3 

 ± i k + O k
 �x

  

� 
 �x

 

 

 �
. (2 10) 

This should be 
ompared with the behavior of the exa
t solutionsolution for the wave equation (1.1) - see 

remark 1.1 - whi
h evolves Fourier modes a

ording to the rule 

k � t
u � exp 

 (
 i (xn ±
 

 t
�

) 
 

j)
x

  

 

� exp 

�
i 

� 
kn ± kj

 �
.

 �x
 

 

Thus the exa
t evolution 
orresponds to a fa
tor G given by 

 �
 �t  

=
 �t  �t

G exp ± i k = 1 ± i
 2

exa
t
 

� x
  k + O ( k ) . (2 11)

 

 

� 
 �x

 �
 �x 

 �

This should be 
ompared with (2.10) above. It is 
lear then that (for k small) G is 
orre
t up to 

small terms in k, whi
h is an alternative way of verifying that the s
heme (1.7) is 
onsistent. 

3 Numeri
al  Vis
osity and Stabilized  S
heme. 

FILL IN HERE THE GOOD SCHEME EQUATIONS. (3 1) 

Notation used for G o o d S
heme in -!4,!"ȡ T = ( �t  2
 �x)2 and v = t  �x . 

Next the fgures that go with the go  o d s
heme. 

4 Referen
e.  

For more information  regarding stability of numeri
al s
hemes (and many other useful numeri
al 

topi
s) a good all-around pra
ti
al referen
e is Numeri
al Re
ipes, The Art of S
ientif
 Computing  

by \ H Press, S A Teukolsky, \ T Vetterling and B P  Flannery  Cambridge U. Press, New 

York, 1992  .



Numerical solution u with N = 55 points 
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Figure 3 1: Solution of (1.5) with initial data (1.8) using the 
orre
ted s
heme (3.1) 

with 55 points in the spa
e grid. To avoid an over-dense graph not all the points 

in the numeri
al grid are plotted. However, enough points to show all the relevant 

details are kept. 

S
ol

ut
io

n 
u 

= 
u(

x,
 t)

. 
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Numerical solution u with N = 190 points 
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Figure 3 2: Solution of (1.5) with initial data (1.8) using the 
orre
ted s
heme (3.1) 

with 190 points in the spa
e grid. To avoid an over-dense graph not all the points 

in the numeri
al grid are plotted. However, enough points to show all the relevant 

details are kept. 

S
ol

ut
io

n 
u 

= 
u(

x,
 t)
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