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1	 Short notes on separation of variables. 

Imagine that you are trying to solve a problem whose solution is a function of several variables, 

e.g.: u = u(x, y z). Finding this solution directly may be very hard, but you may be able to find 

other solutions with the simpler structure 

u = f(x) g(y) h(z),	 (1.1) 

where f , g, and h are some functions. This is called a separated variables solution. 

If the problem that you are trying to solve is linear, and you can find enough solutions of the form in 

(1.1), then you may be able to solve the problem using a linear combinations of separated variables 

solutions. 

The technique described in the paragraph above is called separation of variables. Note that 

1.	 When the problem is a pde and solutions of the form in (1.1) are allowed, the pde reduces to 

three ode — one for each of f , g, and h. Thus the solution process is enormously simplified. 
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2.	 In (1.1) all the three variables are separated. But it is also possible to seek for partially 

separated	 solutions. For example 

u = f(x) v(y, z). (1.2) 

This is what happens when you look for normal mode solutions to time evolution equations 

of the form 

ut = L u, (1.3) 

where L is a linear operator acting on the space variables rr = (x, y, . . .) only — for example: 

L = ∂x 
2 + ∂y 

2 + . . .. The normal mode solutions have time separated 

λ tφ(ru = e r), where λ = constant,	 (1.4) 

and reduce the equation to an eigenvalue problem in space only 

λφ = L φ.	 (1.5) 

3.	 Separation of variables does not always work. In fact, it rarely works if you just think of 

random problems. But it works for many problems of physical interest. For example: it 

works for the heat equation, but only for a few very symmetrical domains (rectangles, circles, 

cylinders, ellipses). But these are enough to build intuition as to how the equation works. 

Many properties valid for generic domains can be gleaned from the solutions in these domains. 

4.	 Even if you cannot find enough separated solutions to write all the solutions as linear combi­

nations of them, or if the problem is nonlinear and you can get just a few separated solutions, 

sometimes this is enough to discover interesting physical effects, or gain intuition as to the 

system behavior. 

1.1	 Example: 

heat equation in a square, with zero boundary conditions. 

Consider the problem 

Tt = Δ T = Txx + Tyy, (1.6) 
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in the square domain 0 < x, y < π, with T vanishing along the boundary, and with some initial data 

T (x, y, 0) = W (x, y). To solve this problem by separation of variables, we first look for solutions 

of the form 

T = f(t) g(x) h(y),	 (1.7) 

which satisfy the boundary conditions, but not the initial data. Why this? This is important!: 

A.	 We would like to solve the problem for generic initial data, while solutions of the form (1.7) 

can only achieve initial data for which W = f(0) g(x) h(y). This is very restrictive, even more 

so because (as we will soon see) the functions g and h will be very special. To get generic 

initial data, we have no hope unless we use arbitrary linear combinations of solutions like (1.7). 

B.	 Arbitrary linear combinations of solutions like (1.7) will satisfy the boundary conditions if an 

only if each of them satisfies them. 

Substituting (1.7) into (1.6) yields 

f " g h = f g" " h + f g h" ",	 (1.8) 

where the primes indicate derivatives with respect to the respective variables. Dividing this through 

by u now yields 
" " h" " f " g

= + .	 (1.9)
f g h 

Since each of the terms in this last equation is a function of a different independent variable, the 

equation can be satisfied only if each term is a constant. Thus 

" " h" "	 f "g
= c1, = c2, and = c1 + c2,	 (1.10) 

g h f 

where c1 and c2 are constants. Now the problem has been reduced to a set of three simple ode. 

Furthermore, for (1.7) to satisfy the boundary conditions in (1.6), we need: 

g(0) = g(π) = h(0) = h(π) = 0,	 (1.11) 
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which restricts the possible choices for the constants c1 and c2. The equations in (1.10 – 1.11) are 

easily solved, and yield1 

g = sin(n x), with c1 = −n 2 , (1.12) 

h = sin(m y), with c2 = −m 2 , (1.13) 

−(n2+m2) tf = e , (1.14) 

where n = 1, 2, 3, . . . and m = 1, 2, 3, . . . are natural numbers. The solution to the problem in 

(1.6) can then be written in the form 
∞0 −(n2+m2) tT = wnm sin(n x) sin(m y) e , (1.15) 

n, m=1 

where the coefficients wnm follow from the double sine-Fourier series expansion (of the initial data) 
∞0 

W = wnm sin(n x) sin(m y). (1.16) 
n, m=1 

That is  π  π4 
wnm = dx dy W (x, y) sin(n x) sin(m y). (1.17)

π2 0 0 

1.2 Example: 

Heat equation in a circle, with zero boundary conditions. 

We now, again, consider the heat equation with zero boundary conditions, but on a circle instead 

of a square. That is, using polar coordinates, we want to solve the problem 

1 
Tt = Δ T = (r(r Tr)r + Tθθ) , (1.18) 

r2 

for 0 ≤ r < 1, with T (1, θ, t) = 0, and some initial data T (r, θ, 0) = W (r, θ). To solve the problem 

using separation of variables, we look for solutions of the form 

T = f(t) g(r) h(θ), (1.19) 

which satisfy the boundary conditions, but not the initial data. The reasons for this are the same 

as in items A and B above — see § 1.1. In addition, note that 
1We set the arbitrary multiplicative constants in each of these solutions to one. Given (1.15 – 1.16), there is no 

loss of generality in this. 
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C.	 We must use polar coordinates, otherwise solutions of the form (1.19) cannot satisfy the bound­

ary conditions. This exemplifies an important feature of the separation of variables method: 

The separation must be done in a coordinate system where the boundaries are coordinate surfaces. 

Substituting (1.19) into (1.18) yields 

f " g h =
1

(f r (r g " ) " h + f g h " " ) ,	 (1.20)
2r

where, as before, the primes indicate derivatives. Dividing this through by u yields 

h " " f " (r g " ) " 
= + .	 (1.21)

f r g r2 h 

Since the left side in this equation is a function of time only, while the right side is a function of 

space only, the two sides must be equal to the same constant. Thus 

f " = −λ f	 (1.22) 

and 
" ) " h " " r (r g 

+ λ r2 + = 0,	 (1.23) 
g h 

where λ is a constant. Here, again, we have a situation involving two functions of different variables 

being equal. Hence 

h " " = µ h,	 (1.24) 

and   
1	 µ" ) " (r g + λ + g = 0,	 (1.25)

2r r

where µ is another constant. The problem has now been reduced to a set of three ode. Furthermore, 

from the boundary conditions and the fact that θ is the polar angle, we need: 

g(1) = 0 and h is periodic of period 2 π.	 (1.26) 

In addition, g must be non-singular at r = 0 — the singularity that appears for r = 0 in equation 

(1.25) is due to the coordinate system singularity, equation (1.18) is perfectly fine there. 
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It follows that it should be µ = −n 2 and 

i n θ h = e , where n is an integer.	 (1.27) 

Notes: 

–	 As in § 1.1, here and below, we set the arbitrary multiplicative constants in each of the ode 

solutions to one. As before, there is no loss of generality in this. 

–	 Instead of complex exponentials, the solutions to (1.24) could be written in terms of sine and 

cosines. But complex exponentials provide a more compact notation. 

Then (1.25) takes the form
   
1 " ) " 

n2 

(r g + λ − g = 0.	 (1.28) 
r r2

This is a Bessel equation of integer order. The non-singular (at r = 0) solutions of this equation 

are proportional to the Bessel function of the first kind J|n|. Thus we can write 

g = J|n|(κ|n| m r), and λ = κ2 
|n| m,	 (1.29) 

where m = 1, 2, 3, . . ., and κ|n| m > 0 is the m-th zero of J|n|. 

Remark 1 That (1.28) turns out to be a well known equation should not be a surprise. Bessel 

functions, and many other special functions, were first introduced in the context of problems like the 

one here — i.e., solving pde (such as the heat or Laplace equations) using separation of variables. 

Putting it all together, we see that the solution to the problem in (1.18) can be written in the form 

00∞ ∞
T	 = wn m J|n|(κ|n| m r) exp i n θ − κ2 

|n| m t , (1.30) 
n=−∞ m=1 

where the coefficients wn m follow from the double (Complex Fourier) – (Fourier – Bessel) expansion 

  

00∞ ∞
i n θ W	 = wn m J|n|(κ|n| m r) e . (1.31) 

n=−∞ m=1 

That is: 
2 π 11 −i n θ =	 dθ r dr W (r, θ) J|n|(κ|n| m r) e . (1.32)wn m 

π J|
2 
n|+1(κ|n| m) 0 0 

∫ ∫



 

 
 

 

  

7 18.311 MIT, (Rosales)	 Short notes on separation of variables. 

Remark 2 You may wonder how (1.32) arises. Here is a sketch: 

(i) For θ we use a Complex-Fourier series expansion. For any 2 π-periodic function 

∞0	 2 π1i n θ	 −i n θ dθ. G(θ) = an e , where an = G(θ) e	 (1.33)
2 π 0n=−∞ 

(ii) For r we use the Fourier-Bessel series expansion explained in item (iii). 

(iii) Note that (1.28), for any fixed n, is an eigenvalue problem in 0 < r < 1. Namely 

1 " ) " 
n2 

L g = λ g, where L g = − (r g + g,	 (1.34) 
r r2 

g is regular for r = 0, and g(1) = 0. Without loss of generality, assume that n ≥ 0, and 
1 

consider the set of all the (real valued) functions such that g̃2(r) r dr < ∞. Then define 
0 

the scalar product 
1 

< f, ˜ ˜ f̃(r) ̃ 	 (1.35)g >= g(r) r dr. 
0 

With this scalar product L is self-adjoint, and it yields a complete set of orthonormal eigen­

functions 

φm = Jn(κn m r) and λm = κ2 
n m, where m = 1, 2, 3, . . . (1.36) 

Thus one can expand 

∞0	 11
F (r) = bm φm(r), where bm =  1	 F (r) φm(r) r dr. (1.37)

r φ2 (r) dr 0 m=1	 0 m

Finally, note that 

1	 1 
J2r φ2 (r) dr follows from r J2(κn m r) dr =

1 
n+1(κn m). (1.38)m	 n

0	 0 2 

We will not prove this identity here. 

1.3	 Example: Laplace equation in a circle sector, with Dirichlet 

boundary conditions, non-zero on one side. 

Consider the problem 

1 
0 = Δ u = (r(r ur)r + uθθ) , 0 < r < 1 and 0 < θ < α, (1.39)

2r

∫

∫
∫

∫

∫ ∫
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where α is a constant, with 0 < α < 2 π. The boundary conditions are 

u(1, θ) = 0, u(r, 0) = 0, and u(r, α) = w(r), (1.40) 

for some given function w. To solve the problem using separation of variables, we look for solutions 

of the form 

u = g(r) h(θ), (1.41) 

which satisfy the boundary conditions at r = 1 and θ = 0, but not the boundary condition at θ = α. 

The reasons are as before: we aim to obtain the solution for general w using linear combinations of 

solutions of the form (1.41) — see items A and B in § 1.1, as well as item C in § 1.2. 

Substituting (1.41) into (1.39) yields, after a bit of manipulation 

h " " r (r g " ) " 
+ = 0. (1.42) 

g h 

Using the same argument as in the prior examples, we conclude that 

" ) " h " " r (r g − µ g = 0 and + µ h = 0, (1.43) 

where µ is some constant, g(1) = 0, and h(0) = 0. Again: the problem is reduced to solving ode. 

In fact, it is easy to see that it should be2 

i s − r−is1 r
h = sinh(s θ) and g = , where µ = −s 2 , (1.44) 

s s 

and as yet we know nothing about s, other than it is some (possibly complex) constant. 

In § 1.2, we argued that g should be non-singular at r = 0, since the origin was no different from 

any other point inside the circle for the problem in (1.18) — the singularity in the equation for g 

in (1.25) is merely a consequence of the coordinate system singularity at r = 0. We cannot make 

this argument here, since the origin is on the boundary for the problem in (1.39 – 1.40) — there 

is no reason why the solutions should be differentiable across the boundary! We can only state that 

g should be bounded ⇐⇒  0 is real. (1.45)s = 

2The multiplicative constant in these solutions is selected so that the correct solution is obtained for s = 0. 
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Furthermore, exchanging s by −s does not change the answer in (1.44). Thus 

0 < s < ∞. (1.46) 

In this example we end up with a continuum of separated solutions, 

as opposed to the two prior examples, where discrete sets occurred. 

Putting it all together, we now write the solution to the problem in (1.39 – 1.40) as follows 

∞ sinh(s θ) i s − r −i s u = r W (s) ds, (1.47) 
0 sinh(s α) 

where W is computed in (1.50) below. 

Remark 3 Start with the complex Fourier Transform 

i s ζ ds, 
1 −i s ζ dζ. f(ζ) = 

∞ 
f̂(s) e where f̂(s) = 

∞ 
f(ζ) e (1.48) 

−∞ 2 π −∞ 

Apply it to an odd function. The answer can then be manipulated into the sine Fourier Transform 

∞ ∞2 
f(ζ) = F (s) sin(s ζ) ds, where F (s) = f(ζ) sin(s ζ) dζ, (1.49) 

0 π 0 

and 0 < ζ, s < ∞. Change variables, so that 0 < r = e −ζ < 1. Then, with w(r) = f(ζ) and 
1 

W (s) = − F (s), this yields 
2 i 

∞ 
i s − r −i s w(r) = W (s) r ds, where 

0 
−i s − ri s 11 r

W (s) = w(r) dr, (1.50)
2 π 0 r 

which is another example of a transform pair associated with the spectrum of an operator (see below). 

Finally: What is behind (1.50)? Why should we expect something like this? Note that the problem 

for g can be written in the form 

" ) " L g = µ g, where L g = r (r g , (1.51) 

g(1) = 0 and g is bounded (more accurately: the inequality in (1.52) applies). This is an eigenvalue 

problem in 0 < r < 1. Further, consider consider the set of all the functions such that 

1 dr |g̃|2(r) < ∞, (1.52) 
0 r 

∫ ( )

∫ ∫

∫ ∫

∫ ( )
∫ ( )

∫
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and define the scalar product 
1 

< f, ˜ g >˜ = f̃ ∗ (r) g̃(r) 
dr

. (1.53) 
0 r 

With this scalar product L is self-adjoint. However, it does not have any discrete spectrum,3 

only continuum spectrum — with the pseudo-eigenfunctions given in (1.44), for 0 < s < ∞. This 

continuum spectrum is what is associated with the formulas in (1.50). In particular, note the 

presence of the scalar product (1.53) in the formula for W . 

The End.
 

3No solutions that satisfy g(1) = 0 and (1.52). 

∫
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