
Various lecture notes for 18311.  
R. R. Rosales

April 28, 2011 version 01. 

Abstract 

Notes, both complete and/or incomplete, for MIT’s 18.311 (Principles of Applied Mathematics). 
These notes will be updated from time to time. Check the date and version. 

Contents 

1 Convergence of numerical Schemes.	 2  
1.1 The initial value problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2 The numerical scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.3 Consistency and stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.4 Lax convergence theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.5	 Example: von Neumann stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  

Problem: complete the details for the von Neumann stability example. . . . . . 7  

2 DFT, FFT, and Fourier series.	 7  
2.1 Introduction and motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  

The Discrete Fourier Transform (DFT). . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Problem: verify the DFT and iDFT formulas. . . . . . . . . . . . . . . . . . . 9  

2.2	 Alternative formulations for the DFT. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
 implementation of the DFT and iDFT formulas. . . . . . . . . . . . . . 10  

2.3 Relationship between Fourier series and the DFT/iDFT. . . . . . . . . . . . . . . . 10  
2.3.1	 Fourier series, DFT, and derivatives. . . . . . . . . . . . . . . . . . . . . . . 13  

This subsection is yet to be written. . . . . . . . . . . . . . . . . . . . 13  
2.4	 Simple convergence results for Fourier series. . . . . . . . . . . . . . . . . . . . . . 13  

Problem: compute the asymptotic value of an integral. . . . . . . . . . . . . . 16  
2.4.1	 Convergence in the weak sense. . . . . . . . . . . . . . . . . . . . . . . . . . 17  

This subsubsection is yet to be written. . . . . . . . . . . . . . . . . . 17  
2.5	 The main idea behind the FFT algorithm. . . . . . . . . . . . . . . . . . . . . . . . 17  

This subsection is yet to be written. . . . . . . . . . . . . . . . . . . . 17  
2.6	 Trapezoidal rule and the Euler-Maclaurin formula. . . . . . . . . . . . . . . . . . . 17  

Trapezoidal rule for periodic functions. . . . . . . . . . . . . . . . . . . . . . . 19  
2.6.1	 Bernoulli polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  

Generating function for the Bernoulli polynomials. . . . . . . . . . . . . . . . . 20  
Problem: compute the Bernoulli polynomials’ generating function. . . . . . . . 20  

1 

MATLAB  
 

®



Various lecture notes for 18311. Rosales, MIT 2 

1 Convergence of numerical schemes. 

In this section we introduce some theory dealing with the question of the convergence of numer­

ical schemes for partial differential equations. For simplicity we will consider only the case of an 
homogeneous, one step in time, linear scheme for an initial value problem (IVP) for an 
homogeneous linear system of first order in time partial differential equations (pde) in 1-D. 

1.1 The initial value problem. 

The IVP to be solved has the form 

uut = L uu for xL < x < xR and t > 0, (1.1.1) 

with uu(x, 0) = uu0(x), where uu(x, t) is vector1 valued, L is a linear differential operator, and appro­

priate homogeneous2 boundary conditions (BC) apply. 

Remark 1.1.1 We will assume that (1.1.1) is a well posed problem, with a solution that is as 
smooth as needed (this is specified later). 

Example 1.1.1 Linear scalar equation. ut + a ux = b u, where u = u(x, t) is scalar valued, (a, b) 
are given functions of (x, t), and periodic BC apply: u(xL, t) = u(xR, t). 

Example 1.1.2 Heat equation. ut = (ν ux)x, where u = u(x, t) is scalar valued, ν > 0 is a given 
function of (x, t), and either of the following BC apply (this list of BC is not exhaustive) 

(i) u(xL, t) = u(xR, t) and ux(xL, t) = ux(xR, t) (periodic). 
(ii) u(xL, t) = u(xR, t) = 0. 
(iii) ux(xL, t) = ux(xR, t) = 0. 
(iv) u(xL, t) = ux(xR, t) = 0.   

Example 1.1.3 Wave equation: (u1)t = u2 and (u2)t = c 2 (u1)x x
, where uu = (u1, u2), c is a given 

function of (x, t), and the same BC as in example 1.1.2 apply.   
Example 1.1.4 Klein-Gordon equation. (u1)t = u2 and (u2)t = c 2 (u1)x x − m 2 u1, where uu = 
(u1, u2), (c, m) are given functions of (x, t), and the same BC as in example 1.1.2 apply. 

Example 1.1.5 Korteweg-de Vries equation. ut + a ux + b uxxx = 0, where u = u(x, t) is scalar 
valued, (a, b) are given functions of (x, t), and periodic BC apply: u(xL, t) = u(xR, t), ux(xL, t) = 
ux(xR, t), and uxx(xL, t) = uxx(xR, t). 

1ui ∈ Rd, is a d-column vector, for some d = 1, 2, 3, . . .. 
2Homogeneous BC means BC that yield: If Ouj solves (1.1.1) for the initial values Ou0 = UOj (j = 1 or j = 2), then 

Ou = α1 Ou1 + α2 Ou2 solves (1.1.1) for the initial value Ou0 = α1 UO1 + α2 UO2, where α1 and α2 are arbitrary constants. 



    
  

3 

1 

Various lecture notes for 18311.	 Rosales, MIT

1.2 The numerical scheme. 

Assume an appropriate3 grid in space-time, with constant grid separations Δx > 0 and Δt > 0. 
For example 

Δx = (xR − xL) , xn = xL + n Δx for 1 ≤ n ≤ N, and tj = j Δt for j ≥ 0, (1.2.1)
N + 1 

where N > 1 is any sufficiently “large” integer.4 We assume that the numerical scheme to solve the 
(1.1.1) IVP has the form 

j+1 ju	 = Sj u for j ≥ 0, (1.2.2) 

where uj ∈ R d ×N is a d × N matrix for each j > 0, and {Sj }j≥0 is a sequence of linear operators 
in R d ×N — which could be represented as d N × d N matrices if needed. The operators Sj generally 
depend on: Δt and Δx, possibly some numerical parameters (e.g.: artificial viscosity), and the details 
of the pde to be solved. Furthermore, each of the columns of uj is a d-vector, which we denote by 
uun

j — for 1 ≤ n ≤ N . These vectors are interpreted as the approximations to the values of the solution 
at the grid points. Namely uun

j ≈ uu(xn, tj ). (1.2.3) 
In particular uun 

0 = uu0(xn) (1.2.4) 
should be used to initialize the numerical scheme. 

Note that: 

1.2a	 The interpretation in (1.2.3–1.2.3) is not unique. For example, in many schemes uun
j is taken 

as the average value of the solution over the nth cell: |x − xn| ≤ 1 Δx.
2 

1.2b	 Schemes with meshes where tj+1 − tj = Δt is not a constant are frequently used. Similarly, 
xn+1 − xn = Δx need not be a constant. 

1.2c	 In (1.2.1) the end points xL and xR are not included in the numerical grid. This would be 
appropriate if the solution is prescribed there — e.g.: uu(xL, t) = uu(xR, t) = 0. For periodic 
BC, an appropriate choice is to include one of the end points but not the other, as in: xn = 
xL + (n − 1) Δx for 1 ≤ n ≤ N , with Δx = (xR − xL)/N . Many other choices are possible. 

Example 1.2.1 Consider the heat equation, as in example 1.1.2 – with the BC in (ii). Then, with 
the choice of grid in (1.2.1), a scheme of the form in (1.2.2) is given by  	  Δtj+1 j j j j j j ju	 = u + ν un+1 − u − ν u − un−1 , (1.2.5)1 1n n n n(Δx)2 n−n+

2 2 

j	 j j± 1 
2

where ν = ν  Δx, tj , and u = 0 is used when evaluating the right hand side of xn = u 1 
2 

0 N+1n±
equation (1.2.5) for n = 1 and n = N . This scheme makes sense for any N ≥ 1. 

3See item 1.2c below.  
4The numerical scheme should be defined for any N large enough — where large enough is usually not very large  

— see example 1.2.1. We are, however, interested in the limit N → ∞ here. 

( ) ( )
( )
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1.3 Consistency and stability. 

Let  · N be a norm in R d ×N , where the uj belong — see equation (1.2.2). We assume the following: ⎫ 
Let uu = uu(x) be a suficiently nice d-vector valued function. Define u ∈ R d ×N by ⎪⎬ 
uun = uu(xn), where uun is the n th column of u, for 1 ≤ n ≤ N . Then  u N →  uu ∗ (1.3.1)⎪
as N → ∞, where  ·  ∗ is a norm defined for d-vector valued functions. ⎭ 

   
Example 1.3.1 For d = 1, let  u N =

 N |un|2 Δx. Then  u ∗ =
xR |u(x)|2 dx, and in1 xL 

(1.3.1) “sufficiently nice” means continuous.   N  N−1Example 1.3.2 For d = 1, let  u N = 1 |un|2 Δx + 2 |un+1 − un|2 Δx. Then  u ∗ =  	  xR	 xR C1|u(x)|2 dx + |u'(x)|2 dx, and in (1.3.1) “sufficiently nice” means — i.e.: uu has a 
xL	 xL 

continuous derivative.5 

Remark 1.3.1 Recall that a norm is a real valued function defined on a vector space V such that, 
for any v ∈ V and w ∈ V, and scalars a and b, the following applies: (i)  v ≥ 0, (ii)  v = 0 if 
and only if v = 0, and (iii)  v + w ≤  v +  w . 

Definition 1.3.1 The numerical scheme in § 1.2 is consistent if and only if the following applies: 

uLet uu = U(x, t) be the solution to the IVP (1.3.1) for some arbitrary initial condition uu0. Assume 
that Uu is is sufficiently smooth and define Uj ∈ R d ×N by Uun

j = Uu (xn, tj ), where 1 ≤ n ≤ N , j ≥ 0, 
U j thand un is the n column of Uj. Then

 Uj+1 − Sj U
j N ≤ fc(tj+1) Δt ((Δt)p + (Δx)q) ,	 (1.3.2) 

where p > 0 is the order of the method in time, q > 0 is the order of the method in space, and 
u0 < fc(t) < ∞ is some grid independent bounded function — determined by the solution U and its 

partial derivatives up to some order,a as well as the coefficients b of the equation in the IVP (1.1.1). 
(a) This is why Uu needs to be sufficiently smooth. 
(b) These coefficients must also be sufficiently smooth. 

Example 1.3.3 Consider the numerical scheme in example 1.2.1. In this case (1.3.2) applies with 
p = 1, q = 2, and 

fc(t) = max ( 1 N ) max(M1, M2),	 (1.3.3)
N 

where 
(i)	  1 N indicates the norm of the vector all whose entries are one — since  1 N →  1 ∗ as 

N → ∞, { 1 N }N is a bounded sequence with a maximum. 
5Actually, less is needed — e.g.: an integrable bounded derivative will do (dominated convergence theorem). 
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(ii) M1 = M1(t) is the maximum of 1 |Utt(x, s)|, for xL ≤ x ≤ xR, and 0 ≤ s ≤ t.
2 

(iii) M2 = M2(t) is the maximum of 1 |Ghhhh(x, h, s)|, for xL + h ≤ x ≤ xR − h, and 0 ≤ s ≤ t
24 

— where G is defined in (1.3.5). 

Proof. Using in (1.2.5) Taylor expansions with remainder it follows that 
Δt 

νj U j − U j − νj 
n+1 n − U j 

n−1U j+1 
n − Un

j U j 
n− 1 1

(Δx)2 n−n+
2 2 

=
1 

Utt(xn, τn
j ) (Δt)2 − 

1 
Ghhhh(xn, h

j
n, tj ) (Δx)2 Δt, (1.3.4)

2 24 
for some tj ≤ τn

j ≤ tj+1 and 0 ≤ hj
n ≤ Δx, where 

1 1 
G(x, h, t) = ν(x + h) (U(x + h, t) − U(x, t)) − ν(x − h) (U(x, t) − U(x − h, t)) . (1.3.5)

2 2 
Hence (1.3.3) follows. ♣ 

Remark 1.3.2 Methods exist for which (1.3.2) does not strictly apply. For example, one may have 
l

Uj+1 − Sj U
j

N ≤ fc(tj+1) (Δt)p+1 + (Δx)q . (1.3.6) 

However, in a numerical method one is interested in the situations where both Δt and Δx are small,6 

and generally Δt and Δx are related to each other — e.g. Δt = constant Δx, in which case (1.3.2) 
and (1.3.6) are equivalent. 

Definition 1.3.2 The numerical scheme in § 1.2 is stable if and only if 

uj
N ≤ fs(tj ) u k N , for any 0 ≤ k ≤ j, (1.3.7) 

where 0 < fs(t) < ∞ is some grid (and solution) independent a bounded function. Note that, for 
equation (1.3.7) to apply, restrictions might be needed on Δt and Δx — such as: Δt ≤ constant Δx 
or Δt ≤ constant (Δx)2 . These restrictions must allow Δt and Δx to vanish simultaneously. 
(a) Of course, fs will depend on the coefficients of the equation in the IVP (1.1.1). 

1.4 Lax convergence theorem. 

Theorem 1.4.1 If the scheme in § 1.2 is consistent and stable, then it converges — in any fixed 
time interval 0 ≤ t ≤ T — as Δt → 0 and Δx → 0 (provided that any restrictions on Δt and Δx 
required by (1.3.7) apply). By converges we mean that 

uj − Uj
N → 0, for 0 ≤ tj ≤ T , as Δt + Δx → 0, (1.4.1) 

where Uj is as in definition 1.3.1, uj is the numerical solution (1.2.2) — initialized as in (1.2.4), 
and the convergence is uniform in 0 ≤ tj ≤ T . 

6Formally, Δt → 0 and Δx → 0. 

( ( ) ( ))

‖ ‖
( )

‖ ‖ ‖ ‖
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j+1 − Uj+1Proof: we have u = (uj+1 − Sj u
j ) + (Sj u

j − Sj U
j ) + (Sj U

j − Uj+1). Hence, since 
j+1 − Uj+1 uj+1 − Sj u

j = 0, we can write u = Sj (u
j − Uj ) + (Sj U

j − Uj+1). Recursive application 
of this then yields 

uj − Uj = Sj−1 Sj−2 . . . S1 S0 (u 0 − U0) +(Sj−1 U
j−1 − Uj ) + Sj−1 (Sj−2 U

j−2 − Uj−1) + "   " 
A 

Sj−1 Sj−2 (Sj−3 U
j−3 − Uj−2) + . . . + Sj−1 Sj−2 . . . S1 (S0 U

0 − U1), (1.4.2) 

where A = 0 — since u 0 = U0 . Let 0 < K < ∞ be a bound on fc and fs for 0 ≤ t ≤ T . Then, from 
stability and consistency

 Sj−1 Sj−2 . . . Sc+1 (Sc U
c − Uc+1) N ≤ K  Sc U

c − Uc+1 
N ≤ K2 ((Δt)p + (Δx)q) Δt, (1.4.3) 

for any 0 ≤ f < j. Using this in (1.4.2) then yields 

uj − Uj
N ≤ K2 ((Δt)p + (Δx)q) tj ≤ K2 ((Δt)p + (Δx)q) T , (1.4.4) 

from which (1.4.1) follows. ♣ 

1.5 Example: von Neumann stability. 

Consider now the situation when the equation in (1.1.1) has constant coefficients, and periodic BC 
apply. This is the case where stability can be ascertained using a von Neumann analysis, as we show 
next. For simplicity we will assume a scalar equation (i.e. d = 1), and a normalized period = 2 π, 
with xL = 0 and xR = 2 π. We then use the space grid xn = n Δx, 1 ≤ n ≤ N , with Δx = 2 π/N . 

The initial data for the scheme u 0 = {u 0 }N can be written in the form (see § 2)n n=1 

N N N NN N N N 
0 i c xn i ke n i 2 π c n/N c n un = ac e = ac e = ac e = ac w for 1 ≤ n ≤ N, (1.5.1) 

c=1 c=1 c=1 c=1 

i 2 π/N where w = e is the N th fundamental root of unity, kc = f Δx = c2 π f/N , and the {ac}N are 
some (complex) constants. Then a von Neumann analysis shows that the solution uj = {uj }N 

n n=1 to 
the numerical scheme has the form 

NN 
j i c xnun = ac (Gc)

j e for 1 ≤ n ≤ N, and j ≥ 0, (1.5.2) 
c=1 

where the {Gc}N
c are constants that depend on Δt, Δx, the coefficients of the equation, and any 

numerical parameters. 

Remark 1.5.1 Finite differences approximations to constant coefficients IVP with periodic bound­

ary conditions generally yield numerical schemes for which a von Neumann analysis works. Namely: 
in (1.2.2) Sj = S is independent of j, and S applied to a uj whose components are proportional to 
exponentials of the form e i k n, for some k, yields an answer of the same type. 

‖ ‖

‖ ‖
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We point out that it is possible to produce numerical schemes (not necessarily using finite differences) 
for constant coefficients IVP with periodic boundary conditions, for which a von Neumann analysis 
does not work. Here we assume that this is not the case. 

Apply now the norm introduced in example 1.3.1 to the expression in equation (1.5.2). Using the 
N n (.1−.2)fact that n=1 w = N δ.1 .2 for 1 ≤ f1, f2 ≤ N , we obtain      

N

2 π |ac|2 (|Gc|2)j for j ≥ 0. (1.5.3) 
N 

u j 
N =

c=1 

Define now G = max |G.|. Then 
1≤.≤N 

j ≤ Gj−k k u N u N for 0 ≤ k ≤ j. (1.5.4) 

Comparing this with (1.3.7), we see that stability can be ascertained by studying the behavior of Gj 

as j → ∞ with tj = j Δt bounded. In particular: 

If G ≤ 1, the scheme is stable. (1.5.5) 

Problem 1.5.1 Complete the details for the von Neumann stability example. 
N n (c1−c2) i 2 π/N Show that 7 
n=1 w = N δc1 c2 for 1 ≤ f1, f2 ≤ N , where N > 1 is an integer, and w = e  

is the N th fundamental root of unit. Then use this to derive (1.5.3).  
Hint: w M = 1 if and only if M is a multiple of N .  

2 DFT, FFT, and Fourier series. 

This section deals with the Discrete Fourier Transform (DFT), it fast implementation using the Fast 
Fourier Transform (FFT), and the relationship of the DFT with Fourier series for periodic functions. 

2.1 Introduction and motivation. 

In von Neumann stability analysis — see § 1.5, we conclude that a numerical scheme for a situation 
with periodic boundary conditions8 is stable if and only if the solutions to the scheme of the form 

j i k n uN = Gj e (2.1.1) 
7The notation δ£ j is used for the Kronecker delta: δ£ j = 0 if g  = j, and δj j = 1. 
8Example: finite differences for a 1-D linear, constant coefficients, equation for wave propagation. 

∑
‖ ‖

‖ ‖ ‖ ‖

∑
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remain bounded as M → ∞, for 0 ≤ tj = j Δt ≤ T , Δt = T/M , and T fixed — perhaps with a 
constraint9 relating Δx to Δt. In particular, this happens if |G| ≤ 1 for all solutions of this form. 

However, for the result in § 1.5 to be true, it must be that all the solutions are of the form in (2.1.1), 
or linear combinations of them. This motivates the question: Given any sequence {un}∞ 

−∞, with N 
i ke n un+N = un for some integer N > 0, can we write un = ac e (2.1.2) 

for some finite set of coefficients ac and wave numbers kc? c 

The answer to this question is yes, and is given in detail by theorem 2.1.1 below. 

Before going into details, notice that periodicity un+N = un constraints the possible wave num­

bers that can occur in (2.1.2), since it requires that kc N be a multiple of 2π. Thus ⎫ 
the wave numbers are restricted to the set k. = 2 

N
π £, where £ is an integer. ⎪⎪⎪

i ke n i ke+N n ⎬
Furthermore, e = e for any integer n, hence 

(2.1.3)
the wave numbers can be selected in any range £∗ ≤ £ ≤ £∗ + N − 1, where ⎪⎪⎪⎭
£∗ is some arbitrary integer. 

Theorem 2.1.1 Given any periodic sequence {un}n=+∞ of complex numbers, with period N — n=−∞ 

un+N = un, one can write 
c=c∗+N−1N 2 πi ke n un = ac e , where f∗ is any integer, kc = f, (2.1.4)

N 
c=c∗ 

and {ac}c=+∞ is the periodic, with period N , sequence of complex numbers given byc=−∞ 

n=n∗+N −1N1 −i kn c ac = un e , where n∗ is any integer. (2.1.5)
N 

n=n∗ 

The transformation between periodic sequences {un} → {ac} in (2.1.5), giving the coefficients ac in 
(2.1.4), is the Discrete Fourier Transform (DFT). It’s inverse in (2.1.4) is the Inverse Discrete 
Fourier Transform (iDFT). The names follow from the connection with Fourier series — see § 2.3. 

Remark 2.1.1 Consider the case when f∗ = n∗ = 1. Then (2.1.4) and (2.1.5) become 
c=N n=NN N1i ke n −i kn c un = ac e and ac = un e . (2.1.6)

N 
c=1 n=1 

Because of the periodicity, we need only consider {un} and {ac} for 1 ≤ n, f ≤ N . Hence, in terms of 
(a) the N-vectors iu and ia whose components are {un} and {ac}, respectively, 

i k£ n i 2 π/N(b) the N × N matrix D whose entries are D. n = e = w . n, where w = e , 
we can write 

1 1 
uu = D ua and ua = D† uu, ⇐⇒ D−1 = D† , (2.1.7)

N N 
where † denotes the adjoint of a matrix. 

9Examples: Δt ≤ constantΔx or Δt ≤ constant(Δx)2 . The constraint must allow Δx to vanish as Δt → 0, so 
that convergence can occur. 
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Problem 2.1.1 Verify the DFT and iDFT formulas. 
Show that 

(i) If {ac}c=+∞ is a periodic sequence of period N , the value of the right hand side in (2.1.4) c=−∞ 

is independent of the choice of f∗. Similarly, if {un}n=+∞ is a periodic sequence of period n=−∞ 

N , the value of the right hand side in (2.1.5) is independent of the choice of n∗. 

(ii) For any set of constants10 ac, f∗ ≤ f < f∗ + N , {un} — as given by (2.1.4), is periodic of 
period N . Similarly, for any set of constants un, n∗ ≤ n < n∗ + N , {ac} — as given by 
(2.1.5), is periodic of period N . 

(iii) Substituting (2.1.5) into the right hand side of (2.1.4) yields the left hand side. 

(iv) Substituting (2.1.4) into the right hand side of (2.1.5) yields the left hand side. 

Hints: 

1) For part (i), denote by Sa = Sa(f∗) the value of the right hand side of (2.1.4) as a function of f∗ 

— for some given, fixed, periodic sequence {ac}+∞ Then show that S(f∗ + 1) = S(f∗) for any −∞.  
f∗, from which S = constant follows. The same idea works for (2.1.5).  

N n (.1−.2)2) You will need the following result, obtained in problem 1.5.1: n=1 w = N δ for .1 .2 
i 2 π/N 1 ≤ f1, f2 ≤ N , where N > 1 is an integer, w = e is the N th fundamental root of unit, 

and δi j denotes the Kronecker delta: δi j = 0 if i = j, and δj j = 1. 
i k£ n −i kn . −. n 3) Note that e = w . n, and e = w . 

2.2 Alternative formulations for the DFT. 

If we define vn = un−1 and b. = a.−1, then the equations in (2.1.4–2.1.5) take the form11 

c∗N+N −1 n∗N+N−1
1(c−1) (n−1) −(n−1) (c−1)vn = bc w and bc = vn w . (2.2.1)
N 

c=c∗ n=n∗ " " " " 
iDFT DFT 

i 2 π/N where f∗, n∗ are arbitrary integers, and w = e . These two formulas constitute an alternative 
formulation of the DFT:{vn} → {b.}, and the iDFT:{b.} → {vn}, relating N -periodic sequences. 

In particular, if we select f∗ = n∗ = 1, we obtain 

N NN N1(c−1) (n−1) −(n−1) (c−1)vn = bc w and bc = vn w . (2.2.2)
N 

c=1 n=1 

10For this part of the problem there is no sequence {a£}, just N constants.  
11To get the equations here, replace g∗ → g∗ − 1 in (2.1.4) and n∗ → n∗ − 1 in (2.1.4).  

∑
6=

︷︷ ︷︷
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If v is the N -vector array whose entries are the {vn}, and b is the N -vector array whose entries are 
the {bc}, then the transformations in (2.2.2) are executed by the  commands 

1 
b = fft(v) and v = N ifft(b). (2.2.3)

N 

Remark 2.2.1 A numerical implementation of the DFT and iDFT, as written in (2.2.2), has an 
O(N2) operation, and it is thus rather costly. Fortunately, there is a way (algorithm) to organize 
the calculations that leads to computation whose operation count is O(N ln(N)). This algorithm is 
known by the name of the Fast Fourier Transform (FFT), with inverse given by the inverse Fast 
Fourier Transform (iFFT). This algorithm, of course, is the one  implements.12 

The FFT is important because it allows the fast/efficient implementation of the DFT and iDFT, 
which allow the approximate, efficient, and accurate, calculation of Fourier series and Fourier 
coefficients.13 Since Fourier series appear in very many applications, the FFT and iFFT are widely 
used. A brief description of the main idea behind the FFT algorithm is included in § 2.5. 

2.3 Relationship between Fourier series and the DFT/iDFT. 

Let f = f(x) be a sufficiently nice14 periodic function — assume (for simplicity) that the period is 
2 π, so that f(x + 2 π) = f(x). Then f has a Fourier series 

∞N 
i n x f(x) = Cn(f) e , (2.3.1) 

−∞  x0+2 π1 −i n x dxwhere Cn = f(x) e for n = 0, ±1, ±2, ±3, . . . (2.3.2)
2 π x0 

Here x0 is any real number — the Fourier coefficients Cn do not depend on the choice of x0. 

There are many notions (types of convergence) in which the right hand side in (2.3.1) can represent 
f . We will explore this question (lightly) in § 2.4. The important point here is that, the smoother the 
function f is, the better and faster (less terms needed to get a good approximation) the convergence 
of the series in (2.3.1), in particular: for smooth functions the convergence is very fast: 

NN 
i n x f(x) = Cn(f) e + EN , (2.3.3) 

−N 

where EN → 0 vanishes faster than any power N−p as N → ∞. 
12Hence the command names fft and ifft in (2.2.3). 
13We study the relationship between the DFT/iDFT and Fourier series in § 2.3. 

"14Example: f has two derivatives, with f " integrable — see § 2.4. Note that far less is needed for a Fourier series 
to exist and converge — e.g.: see § 2.4.1. 

MATLAB  

MATLAB  
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Here we will assume that f is “nice” enough to justify the calculations below (two continuous 
derivatives is enough, but not necessary). To be precise, here we assume that 

The series in (2.3.1) converges absolutely and uniformly. In fact, we further 
assume that 

C |Cn(f)| ≤ for n = 0,
|n|p 

where C > 0 and p > 1 are constants — e.g. see remark 2.4.1. 

Introduce a numerical grid on the line by 

2 π 

⎫ ⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎭  

(2.3.4)  

N 

xn = (n − 1) Δx, where Δx = (2.3.5)
N 

n runs over the integers, and N is some “large” natural number. Then use the trapezoidal rule 
to approximate the integrals in (2.3.2), thus obtaining discrete approximations for the Fourier 
coefficients: NN N2 π1 1 1 −i c x dx ≈ fn e −i c xn −(n−1) cCc = f(x) e Δx = fn w (2.3.6) 

2 π  2 π  N 0 n=1 n=1 

i 2 π/Nwhere fn = f(xn) and (as usual) w Thus we write = e  .  

NN

Cc ≈ cc where cc = fn w 
1  −(n−1) c (2.3.7) .  
N 

n=1 

Now, question: 
How good an approximation to C. is c.? (2.3.8) 

Remark 2.3.1 From the results in § 2.6, we should expect the approximation to be quite good, 
but some caution is needed: the results in § 2.6 indicate that, for a fixed “nice enough” function, 
the trapezoidal rule provides a very good approximation to the integral of the function as N → ∞. 
However, here we have a whole sequence of functions that we are integrating (one for each f), so 
the results in § 2.6 have to be taken with a grain of salt. At best they can be used to state that, for a 
fixed set of Cc, the approximation in (2.3.7) gets better very fast as N → ∞ (at least for functions 
with many derivatives). 

Remark 2.3.2 A second note of caution comes from the observation that, when f is comparable 
with N in size, the integrand in (2.3.6) has O(1) oscillations that occur on the same scale as Δx. 
Clearly, when this happens, (2.3.7) can be a good approximation by accident only — definitely not 
for generic functions f , no matter how nice they might be! 

Remark 2.3.3 A final note of caution comes from the observation that (2.3.7) defines cc for all 
integer values of f, in such a way that c.+N = c.. This makes Cc ≈ cc compatible with (2.3.4) only 
for the trivial case Cc ≡ 0. Clearly, in general C. ≈ c. must fail for |£| = O(N) or larger. 

6

∫
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When (2.3.4) applies, an explicit formula relating the cc to the Cc is possible, which can be used to 
answer (2.3.8). The idea is to plug in the Fourier series for f into the definition of cc. This yields15 

N ∞ ∞ N ∞N N N N N1 1i j xn −(n−1) c (n−1)(j−c)cc = Cj (f) e w = Cj (f) w = Cc+k N , (2.3.9)
N N 

n=1 j=−∞ j=−∞ n=1 k=−∞ 

Nwhere we used that J = n=1 w
(n−1) q = 0, unless q = multiple of N , when J = N . Note that this 

formula also shows that {cc} is periodic of period N . This last equation can also be rewritten as 

cc = Cc + (Cc+N + Cc−N ) + (Cc+2N + Cc−2N ) + . . . (2.3.10) 

This makes it clear that the approximation in (2.3.7–2.3.8) is not very good outside the range 
|f| « N . On the other hand, it also shows that we can write 

N 
c£ = C£ + O(N−p) for |£| ≤ , (2.3.11)

2 
where we have used (2.3.4). Hence, when p is large (the function has many derivatives), the 
approximation in (2.3.7) is very good, at least for |£| ≤ N .

2 

Remark 2.3.4 Note that, for f ≈ ±1
2 N the relative error in (2.3.11) is quite large, since then all 

the terms have (roughly) the same size. However, in this case both cc and Cc are small, and then it 
does not matter. 

Guided by the results above, we now complete the discretization of the Fourier series formulas by 
adding to the approximation in (2.3.7) of the Fourier coefficients, the following approximations to 
the Fourier series 

MN 
i c x f(x) ≈ cc e for N = 2 M + 1 odd. 

c=−M 

M−1N1 1−i M x i c x i M x f(x) ≈ c−M e + cc e + cM e for N = 2 M even. 
2 2 

c=1−M 

When used on the grid points xn these yield 

M N−1N N 
c (n−1) c (n−1)fn = cc w = cc w , 

c=−M 0 
M−1 N−1N N1 1−M (n−1) c (n−1) M (n−1) c (n−1)fn = c−M w + cc w + cM w = cc w ,

2 2 
c=1−M 0 

where in each case we use the periodicity properties to shift the summations to the range 0 ≤ f < N . 
15Absolute convergence justifies all the calculations here. 

∑
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Putting this all together yields the following discrete approximation to the Fourier series: 

NNN −1

= c w 
N 1 

. (n−1) and = fn w −(n−1) . ,  (2.3.12) fn c . . 
N 

0 n=1 

where the {fn} correspond to the function values at the grid points — fn ≈ f(xn), and the {cell}
are approximations to the Fourier coefficients — see (2.3.11). 

Equation (2.3.12) should be compared with the DFT and iDFT  
formulas in (2.2.2) and (2.2.3). It should be clear that, with  

⎫⎬ ⎭ (2.3.13)  
the identification vn = fn and b. = c.−1, they are the same. 

2.3.1 Fourier series, DFT, and derivatives. 

This subsection is yet to be written. 

2.4 Simple convergence results for Fourier series. 

In this subsection we present some simple convergence results for Fourier series 

Theorem 2.4.1 Let f = f(x) be a periodic function of period 2 π — f(x + 2 π) = f(x). Assume 
that f has at least two derivatives, with f ' ' integrable. Then the Fourier series in (2.3.1) converges 
to f absolutely and uniformly. In fact      

N

i n xf(x) − Cn(f) e 
N 

      ' ' 
N 1 1 1' ' 

2 π 
' ' (x)| dx≤ 2 f 1 = O , where f 1 = |f 

n2 N2 2 π 0−N n>N 
(2.4.1) 

and N ≥ 0 is any natural number. 

Proof. Integrate by parts twice, and use the periodicity, to obtain 

Cn(f) = 
1 

2 π i n 

2 π 

0 
f ' (x) e −i n x dx = − 

1 
2 π n2 

2 π 

0 
f ' ' (x) e −i n x dx, (2.4.2) 

from which 
|Cn(f)| ≤ 

1 
2 π n2 

2 π 

0 
|f ' ' (x)| dx = 

1 
n2 f ' ' 1. (2.4.3) 

It follows that the series on the right hand side of (2.3.1) converges absolutely and uniformly. Hence it 
defines a continuous function N∞

i n x g(x) = Cn(f) e . (2.4.4) 
−∞ 

Clearly, it is also the case that Cn(g) = Cn(f) for all n. Hence, from theorem 2.4.2, g = f . The result 
in (2.4.1) then follows from (2.4.3). ♣ 
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Remark 2.4.1 It should be clear that, if f is smoother than in the statement of the theorem above, 
then the convergence properties of the Fourier series are even better. For example, if f has p ≥ 2 
derivatives, with f (p) integrable, then (2.4.1) generalizes to 

N

f(x) − Cn

N 
(f) e  i n x f (p)≤ 2 1 

N 2 π1 1 1 
f (p) f (p)(x) dx = O , where  =  1

Np 2 π np 
0−N n>N 

(2.4.5) 
and N ≥ 0 is any natural number.16 In particular: for smooth functions, the Fourier series 
converges faster than any negative power of N = number of terms in the partial sums. 

On the other hand, Fourier series also converge for periodic functions that are less smooth than in 
the statement of the theorem above — although the convergence is then, generally, in weaker senses 
than absolutely and uniformly. For example: 
(1) If f is square integrable, then the Fourier series for f converges to f in the square norm. This 

means that         

N

f(x) − Cn

N 
(f) e  i n x

      

2 π1 
2(x)| dx (2.4.6) → 0 as N → ∞, where g 2 = |g

2 π 0−N 2 

for any function square integrable function g. 
(2) Let f be such that: (i) f is discontinuous at a finite set of points per period. (ii) Let a and b 

be two successive points of discontinuity for f . Then f is twice continuously differentiable for 
a ≤ x ≤ b. In this case the Fourier series for f converges as follows: 
— To f(x) at every point x at which f is continuous. 
— To 1

2 (f(x + 0) + f(x − 0)) at every point x at which f is discontinuous. 
It is important to note that, in this case the convergence is not uniform. In fact, near each 
discontinuity the partial Fourier sums over-shoot and under-shoot, by amounts that do not vanish 
as N → ∞, and exhibit a oscillations in a small17 interval near each discontinuity. This is the 
Gibbs’ phenomenon, of which we will see more later. 

There are many, many, more known results characterizing how Fourier series converge under various 
conditions. Another example is given in § 2.4.1. 

Theorem 2.4.2 Let f(x) and g(x) be two continuous, 2π-periodic functions with the same Fourier 
coefficients. Then f = g. 

Proof. Clearly, Cn(h) = 0 for all n, where h = g − f . Hence N 

"
a+π 

−i n x h(x) cn e dx = 0, (2.4.7) 
a−π "  

p=p(x) 

16The proof of this follows by performing p integrations by parts, instead of only two, in (2.4.2). 
17Vanishes as N → ∞. 

 

Rosales, MIT

∣∣∣∣∣
∣∣∣∣∣ ‖ ‖ ‖ ‖

∫ ∣∣ ∣

∫

∫ ( )
︷︷

∣∣∣∣∣
∣∣∣∣∣ ‖ ‖ ‖ ‖

∫ ∣∣ ∣

∣

‖ ‖

( )



� �     
   

 

 

  

 
  

 
  

 
   

  

 

15 Various lecture notes for 18311. 

where a is arbitrary and the summation is over a finite number of exponentials, with coefficients cn — 
we call p a trigonometric polynomial. We show below that this implies that h ≡ 0. (2.4.8) 

Define the following trigonometric polynomials: 

−i x mei x + 2 + e m 
2 x 

(x) = γ−1 = γ−1 cos , (2.4.9)pm m m4 2 

where m = 1, 2, 3, . . . and 
+π 2 mx 

γm = cos dx > 0. (2.4.10)
2−π 

It should be clear that the pm have the properties below — see figure 2.4.1. 

(i) pm(−π) = pm(π) = 0 and pm(x) > 0 for −π < x < π, with +π 
pm(x) dx = 1.−π 

(ii) For any f, δ > 0 there exists 0 < M < ∞ such that pm(x) ≤ f for δ ≤ |x| ≤ π and m ≥ M . 

These properties imply that pm(x) behaves like the Dirac “delta function” as m → ∞. In particular, let 
y = y(x) be a continuous function in −π ≤ x ≤ π, then 

+π 

lim y(x) pm(x) dx = y(0). (2.4.11) 
m→∞ −π 

This is proved in lemma 2.4.1. Thus we can write, using (2.4.7) 

a+π +π 

0 = lim h(x)pm(x − a) dx = lim h(x + a)pm(x) dx = h(a). (2.4.12) 
m→∞ m→∞ a−π −π 

Since a is arbitrary, this proves (2.4.8). ♣ 

Lemma 2.4.1 Equation (2.4.11) applies. 

Proof. Let Y = max |y(x) − y(0)|. Also, because y is continuous, for any f > 0, there is a δ > 0 
−π≤x≤π 

such that |y(0) − y(x)| ≤ f for |x| ≤ δ. Select now M as in item (ii) above (2.4.11). Then, for m ≥ M 

+π 

−π 
y(x) pm" 

(x) dx − y(0) " 
= 

−δ 

−π 
(y(x) − y(0)) pm(x) dx " " 

+ 
π 

δ 
(y" 

(x) − y(0)) pm(x) dx " 
I 

+ 

I1 

+δ 

−δ 
(y(x) − y(0)) pm(x) dx " " 

, 

I2 

(2.4.13) 

I3 

where we have used item (i) above (2.4.11). Clearly |I1| ≤ f Y (π − δ) and |I2| ≤ f Y (π − δ), 

while 
+δ 

|I2| ≤ f pm(x) dx ≤ f. 
−δ 
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−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

 p 

 Trigonometric polynomial pm for various values of m.

Figure 2.4.1: Trigonometric polynomials pm for: m = 1 (blue), m = 4 (red), m = 16 (black), and 
m = 64 (magenta). As m → ∞, pm ∼ δ(x) for |x| ≤ π — where δ(x) is the Dirac “delta function”. 

Hence 
+π 

y(x) pm(x) dx − y(0) ≤ f + 2 f Y (π − δ), 
−π 

which shows that I can be made as small as desired by taking m large enough. ♣ 

Problem 2.4.1 Compute the asymptotic value of an integral. 
Find the leading order contribution to the integral defining γm in equation (2.4.10), when m » 1. 

Hint. As items (i-ii) below equation (2.4.10) show — see also figure 2.4.1, as m → ∞, the main 
contribution to the integral defining γm arises from a small neighborhood of the origin. To be precise 

δ +π2 m 2 mx  x 3 
8

−where δ = 2 mγm = 2 cos dx + 2 cos dx .  (2.4.14) , 
2 20 " δ " 

I 

1 2x − xHowever, since 0 ≤ cos  ≤ e , it follows that  8
2 

+π 1
2 

4dx ≤ 2 (π − δ) e − m δ2 
4

− m 
e 

δ 
≤ 2 π e−m 4x0 < I ≤ 2  = exponentially small. (2.4.15)  

Hence, for m » 1, 
δ 2 mx 

γm = 2 cos dx + O e −m 
1 
4 .  (2.4.16) 

20 

for m » 1, as follows: This can be exploited to find a simple approximation to the value of γm 
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x	 2 m x(a) Write cos 
2 = exp 2 m ln cos 

2 . 
x	 x 2 m

(b) Expand ln cos 
2 in powers of x, to obtain an approximation to cos 

2 , valid for 0 ≤ x ≤ δ. 

(c) Substitute the result of (b) into (2.4.16), and do the integral.	 This should give a very simple 
formula for the approximate value of γm for m » 1. 

∞ 2 √ 
(d) You will need the fact that 

0 e−x dx = 1
2 π. 

2.4.1 Convergence in the weak sense. 

This subsubsection is yet to be written. 

2.5 The main idea behind the FFT algorithm. 

This subsection is yet to be written. 

2.6 Trapezoidal rule and the Euler-Maclaurin formula. 

The purpose of this subsection is to produce explicit formulas for the error in the trapezoidal rule 
of integration. In particular, we will show that: when integrating a periodic function over a period, 
the order of the error is directly proportional to the degree of smoothness of the integrand. 

We begin by considering a function f = f(x) with N continuous derivatives, defined for 0 ≤ x ≤ 1. 
Then we use integration by parts, using the properties of the Bernoulli polynomials — see § 2.6.1 
— to obtain a formula for 

0

1 
f(x) dx in terms of the values of the function and its derivatives at 

the end points. Note that 

1 1 

f(x) dx = B0(x) f(x) dx, 
0 0 

1 1 1 

B0(x) f(x) dx = B1
' (x) f(x) dx = 

1
(f(1) + f(0)) − B1(x) f ' (x) dx,

20 0 0  
1 1 1 B2

' (x) β2	 B2(x) ' ' (x) dx,B1(x) f ' (x) dx = f ' (x) dx = (f ' (1) − f ' (0)) − f 
2 2	 20 0 0  

1 1 1 B2(x) ' ' (x) dx 
B3
' (x) ' ' (x) dx 

β3	 B3(x)
f = f = (f ' ' (1) − f ' ' (0)) − f (3)(x) dx,

2 6 6	 60 0	 0 

and so on, with the general formula for n ≥ 1 being 

1	 1 B ' Bn(x)	 n+1(x)
f (n)(x) dx =	 f (n)(x) dx 

0 n! 0 (n + 1)!  
1 βn+1	 Bn+1(x) 

= f (n)(1) − f (n)(0) − f (n+1)(x) dx. 
(n + 1)!	 0 (n + 1)! 
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Putting this all together, we obtain 

1 1 β2	 β3
f(x) dx = (f(1) + f(0)) − (f ' (1) − f ' (0)) + (f ' ' (1) − f ' ' (0)) + . . . + 

2 2	 60 

βN 
1 BN (x)

(−1)N+1 f (N−1)(1) − f (N−1)(0) + (−1)N f (N)(x) dx 
N !	 N !"	 0 " 

EN=EN(f , 0, 1) 

N−1N 
= 

1
(f(1) + f(0)) + (−1)n βn+1 

f (n)(1) − f (n)(0) + EN . (2.6.1)
2	 (n + 1)! 

n=1 

We are now ready to write the Euler-Maclaurin formula, which provides an expression for the error 
in approximating the integral of a function using the trapezoidal rule. Let g = g(x) be a function 
with N continuous derivatives, defined in some interval a ≤ x ≤ b. 
Introduce a numerical grid in a ≤ x ≤ b by defining x. = a + £ h for 0 ≤ £ ≤ M , where M > 0 

b−ais a natural number and h = Δx = . Then we can write 
M 

M−1b N xe+h MN−1 1 

g(x) dx = g(x) dx = h g(xc + h x) dx. (2.6.2) 
a xe 0 c=0	 c=0 

We now apply the equality in (2.6.1) to each one of the terms in the sum on the right hand side in 
(2.6.2), with f(x) = fc(x) = g(xc + h x) in each case. It is then easy to see that this yields 

M−1	 N −1b	 N N 
(−h)n+1 βn+1 (n)(a)g(x) dx =

1 
g(a) + g(xc) + 

1 
g(b) h −	 g(n)(b) − g + 

a 2 2	 (n + 1)! 
c=1	 n=1"	 " 

Trapezoidal rule. 
M−1N 

h EN (fc, 0, 1), (2.6.3) " c=0 " 
EN(g)=EN(g, a, b) 

which is the Euler-Maclaurin summation formula. In particular, note that 

1 BN (x)EN (fc, 0, 1) = (−h)N g(N)(xc + h x) dx. (2.6.4)
N !0 

Hence, using (2.6.12) we see that 

1 xe+h 

|EN (fc, 0, 1)| ≤ hN g(N)(xc + h x) dx = hN−1 g(N)(x) dx, (2.6.5) 
0 xe 

from which it follows that 
b 

|EN (g, a, b)| ≤ hN g(N)(x) dx.	 (2.6.6) 
a 
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Remark 2.6.1 Trapezoidal rule for periodic functions. Suppose that g above in (2.6.3) is peri­

odic of period b − a. Then 

b M

g(x) dx = h g(xc) + EN (g, a, b), where EN (g, a, b) = O(hN ). (2.6.7) 
a c=1 

In particular: for smooth periodic functions, the error the trapezoidal rule approximation to 
their integral over one period vanishes, as h → 0, faster than any power of h. 

By contrast, notice that Equations (2.6.3) and (2.6.6) show that, for generic functions (with, at 
least, a second derivative that is integrable) the trapezoidal rule is second order only 

N 

b 1 M−1

g(x) dx = g(a) + g(xc) + 
N 1 

g(b) h − h2 1 
β2 (g ' (b) − g ' (a)) + E2(g, a, b), (2.6.8)  

a 2  2  2  
c=1 

where E2(g, a, b) = O(h2). 

2.6.1 Bernoulli polynomials. 

The Bernoulli polynomials Bn = Bn(x) and the Bernoulli numbers βn are defined as follows 

(a) B0 = 1, 
(b) B ' n = n Bn−1 for n > 0, 
(c) 0 = 1 

0 Bn(x) dx for n > 0, 
(d) βn = Bn(0), 

⎫ ⎪⎪⎪⎬ ⎪⎪⎪⎭  
(2.6.9)  

dwhere the prime denotes 
dx and n = 0, 1, 2, 3, . . . These equations determine the polynomials 

recursively — the arbitrary constant of integration in (b) is determined by the condition in (c). 
The first few Bernoulli polynomials are B0 = 1, B1 = x − 1 , B2 = 1 x2 − 1 x + 1 , . . .

2 2 2 12 

Notice that 
Bn is a degree n polynomial. (2.6.10) 

Bn(0) = Bn(1) = βn for n ≥ 2. (2.6.11) 

The first statement here follows by induction from (a) and (b) in (2.6.9). The second follows from 
(b) and (c) in (2.6.9). 

Lemma 2.6.1 Define the constants Mn by Mn = max IBn(x)I. Then Mn ≤ n!. (2.6.12) 
0≤x≤1 

Proof: Clearly true for n = 0. For n > 0, (c) in (2.6.9) shows that Bn has a zero at some 0 < xn < 1. 
Hence from (b) in (2.6.9) Bn(x) = n x 

Bn−1(s) ds, thus |Bn(x)| ≤ n Mn−1 |x − xn| ≤ n Mn−1. ♣ 
xn 
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20 Various lecture notes for 18311. 

Definition 2.6.1 The generating function for the Bernoulli polynomials is defined by 

∞N 1 
G(x, t) = tn Bn(x). (2.6.13) 

n! 
n=0 

Note that, from (2.6.12), the series defining G converges for all 0 ≤ x ≤ 1 and |t| < 1 — in fact, 
it can be show that it converges for all x and all |t| < 2 π. 

Problem 2.6.1 Compute the Bernoulli polynomials’ generating function. 
Find an explicit expression for G in (2.6.13). 

Hint: Use (b) in (2.6.9) to compute Gx and find a simple ode in x that G solves, for each t. Write the 
general solution to this ode — this solution will have a free “constant” — which is actually a function 
of t, say f = f(t). Determine f = f(t) using (a) and (c) in (2.6.9), which can be used to obtain the 
value of 

0

1 
G(x, t) dx. 

The End.  
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