18.311: Principles of Applied Mathematics Lecture 13

Rodolfo Rosales Spring 2014

a) Note about solving ode's!

How do you solve dx/ds = x-y and dy/ds = x+y,

$$x(0) = z$$
 and $y(0) = 0 \dots ?$

CANNOT DO SEPARATION OF VARIABLES!

b) Example 3: $A_t + (0.5*A^2)_x = 0$, with a > 0 a constant, and

A = a for
$$x < 0$$
, $a > 1$, $t --> \infty$, get shock.

A = x for
$$0 < x < 1$$
, $a < 1$, $t --> \infty$, get rarefaction.

$$A = 1 \text{ for } 1 < x$$

Note that there is always a shock starting at x=t=0. But for a < 1 this shock never reaches the A = 1 region, and becomes smaller and smaller as t grows.

Draw solution [A as a function of x] for typical values of t.

MIT OpenCourseWare http://ocw.mit.edu

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.