GENERAL FRAMEWORK. Discrete to continuum limits.

- Densities and fluxes.
- Issues relating to the meaning of the "continuum" limit.
- EXAMPLES: Car densities and flux.
 - o Interstellar media (where do super-nova shocks travel on?).
 - o River density and flux.
 - Pressure in a gas. Other fluid properties.
- Grade "curve" (idealization versus reality: histograms).

EXAMPLE: Lighthill-Whitham model for Traffic Flow.

Derive the model equation $\rho_t + q_x = 0$, where q is a function of ρ .

Brief discussion of the continuum limit involved:

- What is ρ and under what assumptions one can define it.
- What is q and under what assumptions one can define it.
- Point out analogy with continuum hypothesis in fluids and solid matter. The difference between 10^{20} and $10^{1.5}$.
- Conservation of cars: Integral and differential forms.

CLOSURE PROBLEM: more unknowns than equations.

1) Quasi-equilibrium approximation leading to $q = Q(\rho)$.

Assumption: there is a stable equilibrium to which system adjusts on a time scale faster than the time scales of interest in problem. Explain how drivers, at steady state, and given a velocity, adjust to an optimal separation between cars. When changes slow enough, they have time to adjust to the optimal separation, so one can use $q = Q(\rho)$ to fill-in for the "missing" equation in the conservation of cars [one equation for two unknowns: ρ and q]. Typical time scale here is seconds [dominated not by human reaction time, but car inertia!]. Compare this with the adjustment times in thermodynamics.

2) Discuss generic form of Q. Existence of a maximum throughput $q_m = Q(\rho_m)$.

Lighthill-Whitham model for Traffic Flow.

The flux function $q = Q(\rho)$:

Discuss practical significance of the existence of $q_m = Q(\rho_m)$.

Leads to entrance lights at highway access at peak time.

Explain purpose, and limitations (no dynamics and not enough space to have cars wait till optimal ρ_m is reached).

MIT OpenCourseWare http://ocw.mit.edu

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.