Here we are only interested in real matrices, though the results have easy generalizations to complex matrices.

a) A symmetric matrix has real eigenvalues, and the eigenvectors can be taken to be an orthonormal basis.

```
b) If \{n\_j\}, 1 <= j <= N, is an orthonormal basis of R^N, then any vector Y can be written in the form Y = sum_1^N y_j n_j, where y_j = <n_j, Y> <, > = scalar product.
```

c) Let A be a real-diagonalizable square matrix. Let R_j , $1 \le j \le N$, be a set of N linearly independent right (column) eigenvectors of A

 $A R_j = lamda_j R_j$

where the lambda's are the eigenvalues [they need not be distinct]. Then a set of N linearly left (row) eigenvectors of A

L_j A = lambda_j L_j
can be selected such that
L n^T R m = delta {n, m},

where delta_{n, m} is the Kronecker delta. Then any (column) vector Y can be written in the form

 $Y = sum_1^N y_j R_j$, where $y_j = L_j^T Y$.

This formula generalizes the one in (a-b), which applies for symmetric matrices.

MIT OpenCourseWare http://ocw.mit.edu

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.