Do FD schemes. Follow the notes attached to PSet#08, plus examples. Start with lecture in MATLAB  $^{\circledR}$  toolkit GBNS\_lecture.

Further material in the web page [notes section] under

- Stability of Numerical Schemes for PDE's (Quick preview).
- Stability of Numerical Schemes for PDE's.
- Various lecture notes for 18311.

Section: Convergence of numerical Schemes.

Finite difference schemes for PDE's. Follow notes:

Stability of Numerical Schemes for PDE's.

- 1. Naive Scheme for the Wave Equation. USE the MATLAB script in the 18311 toolkit: GBNS lecture.
- 2. von Neumann stability analysis for PDE's.
- 3. Numerical Viscosity and Stabilized Scheme.
- 4. Model equation.
- 1) von Neumann stability analysis.

Recall that solutions to time-evolution linear PDE's can be found by separation of the time variable --- recall analogy with ODE approach --- leading to an eigenvalue problem. Extend idea to constant coefficients linear FD schemes --- key to the von-Neuman stability analysis.

- 2) Examine instabilities using associated equation: Explain behavior via forward & backward heat equations.
- 3) Introduce stabilization by artificial viscosity (general idea). Relationship with the solutions of the heat equation by separation of variables  $\exp(-k^2 + i + i + k + x)$ . Inspect what happens when a term  $u_{xx}$  is added to an equation like  $u_t + u_x = 0$ . What does it do to the normal modes? Other examples [0 < D << 1]
  - $u_t + u_{xxx} = D^*u_{xx}$
  - $u_t = v + D^*u_{xx}$  and  $v_t = u_{xx} + D^*v_{xx}$
- 4) Define CONSISTENCY. von Neumann and consistency: Numerical and exact growth rates; comparison in the small k limit.
- 5) Define STABILITY
- 6) Lax Theorem: for linear schemes, Consistency+Stability ==> Convergence.

## Further details:

7) Show that the general solution to a finite differences linear scheme can be written as a linear combination of the solutions  $G^{j*}e^{(i*k*n)}$  obtained by the von Neuman stability analysis. In other words, show that the matrix  $\{w^{n*m}\}$  has an inverse,

Rodolfo Rosales Spring 2014

where  $w = e^{i*2*\pi/N}$ . This leads to the Discrete Fourier Transform (DFT), which will be the next course topic.

- 7) Associated equation. More examples of von Neuman stability analysis; associated equation, and stabilization by artificial viscosity: Lax-Friedrich sheme.
  - Computer illustrations
  - Numerical instabilities ......GBNS\_lecture scheme.m
  - Wave breaking and steepening ....... demoWBRch\_v02.m
  - Convergence of Fourier Series ...... fourierSC.m
  - Talk about Gibb's phenomena [related to new topic below].

Further material [in the introduction to problem set #08] Introduction to the vNSA problem series.

## Example #1 in the notes

Explain idea behind "artificial viscosity" used to stabilize a scheme. Motivate it by looking at what adding a term  $u_{xx}$  to an equation like  $u_t+u_x=0$  does to the normal modes. For that matter, what it does do  $u_t+u_{xxx}=0$ .

Forwards and backwards differences for  $u_t + u_x$  Assigned in pset #08.

CFL condition. Necessary but not sufficient for stability Both the "good" and "bad" schemes satisfy CFL if dt < dx.

MIT OpenCourseWare http://ocw.mit.edu

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.