More than 1-D. Conservation laws in 2-D or 3-D.

Flux q is now a vector. Use Gauss theorem to obtain general form ρ_t + div(q) = S (S equal sources & sinks).

Examples of S:

- Cars flowing in/out of highway through commuter township.
- Water flowing into river from small affluents.
- Heating by electromagnetic waves [microwave oven].

EXAMPLE: Heat flow in 2-D or 3-D.

Then,

 $\rho = r c_v T = conserved stuff (heat) per unit mass$

Where:

 c_v = specific heat of material

r = mass density

T = temperature

Fick's law applies:

Q = - kappa gradient(T), and kappa = heat conductivity.

Thus Heat equation:

 $T_t = nu \text{ Laplacian } T$,

Where

 $nu = kappa/(r c_v) = coeff$. thermal diffusion.

EXAMPLE:

Diffusion equation (Salt in water, sugar in coffee, ink in water, ETC.)

Same as heat equation

C_t = nu*Laplacian C

Where

C = concentration (salt, ink, sugar, ...)

nu = diffusion coefficient.

intuitive justification of Fick's law.

DIMENSIONS and DIMENSIONAL ANALYSIS.

What are the dimensions of kappa? nu? c_v ?

How long does it take sugar to sweeten a coffee cup without stirring? Idealized problem: start with a very small blob of ink, and ask:

What is the radius of the blob of ink, R = R(t), as the blob expands due to diffusion? Dimensional analysis says: $R(t) \propto \sqrt{(nu^*t)}$

In particular, let L be the size of the coffee cup. Sugar will reach whole cup when $R = O(L) ===> time = O(L^2/nu)$.

Also the relevant time needed to cool/heat a size L vessel.

These times are very long when measured in human-relevant scales. Hence stirring needed. Boiling and convection speed up heating.

Questions:

- why does stirring help?
- why does convection occur?
- what would happen when heating something with a flame in the absence of gravity?

At room temperature, in cm²/sec

Thermal diffusivity: water ~ 0.0014 mercury ~ 0.042

Diffusion in water: NaCl $\sim 10^{-5}$

MIT OpenCourseWare http://ocw.mit.edu

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.