
Course 18.312: Algebraic Combinatorics 

Lecture Notes # 27 Addendum by Gregg Musiker 

April 15th, 2009 

Today’s lecture notes cover the Oriented Matrix Theorem, which is discussed in 

Sections 9 and 10 of Richard Stanley’s “Topics in Algebraic Combinatorics” lecture 

notes. The proof presented in class more closely resembles the bijective proof in 

Section 4.4 of “Constructive Combinatorics” by Dennis Stanton and Dennis White. 

I also thank Adriano Garsia for introducing me to this proof. 

1	 A Combinatorial Proof of the Oriented Matrix 
Theorem 

We begin with a method to turn an oriented rooted tree into a word: 

w(T ) = a1,fin(e1)a2,fin(e2)a3,fin(e3) . . . , a�r,fin(er), . . . , an,fin(en). 

Here, we have encoded each edge (init(e), f in(e)) as a variable ainit(e),fin(e). Since 

T is an oriented and rooted tree, this means that every vertex besides the root r has 

precisely one edge eminating from it. (So in particular, the tree has exactly |V | − 1 

edges and each tree encodes a monomial of degree (|V | − 1).) We denote the edge 

having init(e) = k as ek. Writing the ak,fin(ek) in order, excluding the root yields the 

above expression for w(T ). Exercise: Build the unique tree (up to isomorphism) 

with word w(T ) = a12a25a35a43a65a73a8,10a9,10a10,2a11,3. Hint: it has vertex 5 as a 

root. 

Example. There are 16 Cayley trees on 4 nodes (i.e. spanning trees of K4), four 

of which are rooted at vertex 4. The words associated to these four trees are 

a12a23a34, a12a24a31, a13a23a34, and a13a24a34. 

Since every vertex has exactly one outgoing edge, the words for these four trees are 
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a subset of the monomials obtained by multiplying out the expression 

(a12 + a13 + a14)(a21 + a23 + a24)(a31 + a32 + a34). 

However, some of the resulting terms, such as a12a23a31, do not correspond to trees, 

but instead correspond to a digraph containing a cycle. 

Theorem. For any complete graph Kn+1, then the sum of all monomials corre­

sponding to oriented spanning trees of Kn+1 which are rooted at vertex (n + 1) 

equals the determinant of the matrix L(Kn+1): 

 
a12 + a13 + · · · + a1,n+1 −a12 −a13 . . . 

 −a21 a21 + a23 + · · · + a2,n+1 −a23 . . . 
 
 −a31 −a32 a31 + a32 + · · · + a3,n+1 . . . 
 
 . . . .. . . .
 . . . . 

−an1 −an2 −an3 . . . an1 + 

Note that this determinant can also be restated as the alternating sum 

sgn(σ)b1,σ(1)b2,σ(2) · · · bn,σ(n) 

σ∈Sn 

where 
{ 

ai1 + ai2 + · · · + ai,n+1 if i = j
bij = . 

−ai,j otherwise 

Remark. This Theorem is equivalent to the oriented matrix tree theorem for a 

general multigraph with directed edges. In particular, if one replaces each instance 

of the variable aij with the number of directed edges from vertex i to vertex j (which 

can possibly be zero) then the determinant of this matrix exactly equals the number 

of oriented spanning trees rooted at vertex (n + 1). 

We now work towards the proof of this theorem for the case of the digraph Kn+1. 

We first introudce the notation Ri = ai1 + ai2 + · · · + ai,n+1, δi,j = 1 if i = j and 0 

otherwise, and the convention that aii = 0 for all i. This allows us to rewrite the 

above determinant as 

n 

(Riδi,σ(i) − ai,σ(i))

σ∈Sn i=1


= sgn(σ) (−ai,σ(i)) Riδi,σ(i). 

σ∈Sn S⊆{1,2,...,n} i∈S i∈{1,2,...,n}\S 

 
−a1n 

−a2n 
 
−a3n 
 

.  . .  
an2 + · · · + an,n+1 
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Rearranging the sum, and letting S denote {1, 2 . . . , n} \ S, yields 

det L(Kn+1) = sgn(σ) (−ai,σ(i)) Riδi,σ(i) 

S⊆{1,2,...,n} σ∈Sn i∈S i∈S 

= sgn(σ)(−1)|S| ai,σ(i) Ri. 

S⊆{1,2,...,n} σ∈Sn,σ(i)=i for all i∈S i∈S i∈S 
σ(i)6=i for any i∈S 

Note that this sum now involves only permutations σ with no fixed points in set S. 

We call such a permutation a derangement on S and denote this set as D(S) for 

shorthand. We also let a(σ) be shorthand for i∈S ai,σ(i). 

Claim 1. The terms in the expansion of i∈S Ri correspond to fixed-point-free 

maps from S to {1, 2, . . . , n + 1}. 

Proof. Each monomial in this expansion has the form ai1,j1 ai2,j2 · · · aik,jk 
where 

{i1, i2, . . . , ik} denotes the elements of S in order. Since we assume that ai,i = 0 

for all i, the only terms appearing in this expansion are those where jd 6 id for = 

all 1 ≤ d ≤ k. Since each id appears as the first index exactly once, we let this 

monomial denote the function f such that f(id) = jd for all 1 ≤ d ≤ k. Such an f 

is therefore a fixed-point-free map with the correct domain and range. 

Claim 2. The sums 

(−1)#cycles in σ a(σ) a(f), (1) 
S⊆{1,2,...,n} σ∈D(S) f is a fixed−point−free map : S→{1,2,...,n+1} 

and a(f) (2) 
f is a cycle free map : {1,2,...,n}→{1,2,...,n+1} 

are equal. 

We defer the proof of Claim 2 for the moment to observe that together Claims 1 

and 2 imply the Oriented Matrix Tree Theorem. 

Remark. By definition, sgn(σ) = (−1)(#cycles in σ)−|S| since σ(i) = i for all i ∈ S. 

It follows then by Claim 1, the notation a(f) = i∈S ai,f(i), and the definition 

of D(S) that det L(Kn+1) equals the expression (1). Claim 2 then implies that 

det L(Kn+1) also equals (2). Lastly, each cycle-free map f uniquely encodes an 

oriented rooted spanning tree using a(f) = w(T ), the word of the tree defined in 

the introduction. 



We have therefore reduced the proof to the verification of Claim 2. We proceed 

using a technique known as a sign-reversing involution. This technique will be 

used again in lectures 36 and 37 when we count non-intersecting lattice paths in 

a directed acyclic graph (using Gessel-Viennot theory, also known as Lindström’s 

Lemma). 

Proof of Claim 2. The triple sum in expression (1) sums over the possible choices 

of maps f : {1, 2, . . . , n} → {1, 2, . . . , n + 1} with no fixed points. The domain of 

such a map can be broken up into two sets, S and S (with S possibly empty), so 

that the restriction of f to S is a permutation σ with no fixed points, and the image 

of f(S) is entirely contained in S. 

Example: The reader may find it helpful to draw the digraph corresponding to the 

word 

a12a24a32a47a56a65a73, 

and attempt to decompose this in at least one way into a disjoint set of digraphs 

on S and S. Hint: For example, one may let S = {5, 6} so that a(σ) = a56a65, 

and a(f) = a12a24a32a47a73. Another decomposition would have S = {2, 3, 4, 5, 6, 7}, 

a(σ) = a24a47a73a32a56a65, and a(f) = a12. 

By convention, we color the digraph on set S, corresponding to a(σ), red and the 

digraph on set S, corresponding to a(f), blue. Since f has no fixed points, it follows 

that if set S is non-empty, then it contains at least two elements and the digraph 

corresponding to the restriction f |S contains at least one cycle. Thus the red 

digraph contains at least one cycle unless S is empty. 

We define a map on the space of these bicolored digraphs that takes the cycle contain­

ing the vertex with the lowest index (with respect to the ordering {1, 2, 3 . . . , n+1}) 

and switches the color of this cycle. Observe that changing this color still results in 

an (S, S)-decomposition, i.e. a (σ, f)-decomposition, that is still valid. The result­

ing word of this bicolored digraph is unchanged however the exponent of the sign 

(−1)#cycles in σ is changed by precisely one since we only enumerate cycles in the set 

S. Thus, in the total sum, these two words cancel out each other and the entire 

sum reduces to the sum of contributions which do not pair-off in this way. This 

results in only the fixed points, or the elements which are not changed by this map. 

In this case, these terms exactly correspond to the blue acyclic digraphs, i.e. the 

digraphs where S = ∅ and we obtain expression (2). 
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