Course 18.312: Algebraic Combinatorics

Lecture Notes # 1 Addendum by Gregg Musiker
February 4th - 6th, 2009

1 Recurrence Relations and Generating Functions

Given an infinite sequence of numbers, a generating function is a compact way of
expressing this data. We begin with the notion of ordinary generating functions.
To illustrate this definition, we start with the example of the Fibonacci numbers.

{Fo}olo =A{Fo, F1, Fy, Fs, .}

defined by Fy =1, Fy =1, and F,, = F,,_1 + F,,_5 for n > 2.

1,1,2,3,5,8,13,21,34, ...
We define
F(X) = Fy+ Fix+ Fa? + Fsa® + Fyat 4.
= l+a+22>+32° + 52" + 82+ ... .
In other words, F(X) is the formal power series Y - Fyz".

Remark. This is called a “formal” power series because we will consider z to

be an indeterminate variable rather than a specific real number.

In general, given a sequence of numbers {a;}3°, = {ao, a1, as, as, . ..}, the associ-

ated formal power series is

AX) = Zakxk = ag+ a1z + asx® +asxd + ... .
k=0
We will shortly write down F'(X) in a compact form, but we begin with an easier

example that you have already seen.



Recall that (Z) = ﬁlk), For example,

{(/g)}kzo—{ ,8,28,56,70,56,28,8,1}.

In fact if & > §, (2) (e.g. (g)) equals zero. Thus we can consider the entire infinite

sequence as

8 00
=182 28,81
{(k) }k:O {1,8,28,56,70,56,28,8,1,0,0,0,...},

and then the associated formal power series
1+ 8z + 282” + 562° + 702" + 562° + 282° + 827 + 2% + 027 + 02" + . ..

can be written compactly as (1 + z)®.

Generalizing this to any positive integer n, { (Z) }:O:O has associated power series
(14 ), since (14 2)" = >"_, (¥)2* by the Binomial Theorem.

This illustrates that from a formal power series, we can recover a sequence of
numbers. We call these numbers the coefficients of the formal power series. For

example, we say that (}) is the coefficient of z* in (1 + x)". This is sometimes

k

written as (1 + x)"’mk = () or [2*](1+2)" = (}).

1.1 More complicated formal power series

We now want to write a similar expression for F(X) = Y2 Fya", where F, =
Fo_1+ F_5for k>2and Foy = F) = 1.
Notice that

i apa’ + i bpat = i(ak + by, )"
k=0 k=0 k=0

As a consequence, Fj, = Fj,_1 + Fj_o for k > 2 implies

F(X) = 1+ Fz+) Fa*

k=2

= 1+ Fa+ Z(Fk_l + Fpp)a®

k=2
= 1+ FlfL’ + Z Fk_ll’k + Z Fk_gl'k
k=2 k=2

— 1+ Fa+ (:CF(X) - F0x> + 22 F(X).



Thus
FX)(1—-z—-2*)=1+(F - F)z=1+0z

and we obtain the rational expression

1
FX) ===
If we look at the Taylor series for this rational function, we indeed obtain coef-
ficients that are the Fibonacci numbers. Generating Functions are also helpful for
obtaining closed formulas or asymptotic formulas.

If we use partial fraction decomposition, we see that

A B
—1—)\11' 1—)\21'.

We know that (1 — A\jz)(1 — Xoz) =1 —2 — 22 so

F(X)

)\1)\2 = -1 and
—)\1—)\2 - —1

Thus {A\, Ao} = {185, 155}

Exercise 1: Solve for A and B and use this to obtain a closed form expression
for F; k-

Notice that as a consequence we can compute that { Fy.1/Fy} = {1/1,2/1,3/2,5/3,8/5,13/8, ...}

1+v5 1-5 F
converges to +T since <_T> — 0 as k — 00, so

ANFFL 4 BT AN
—
ANY + BXS ANk

:)\1.

1.2 A Combinatorial Interpretation of the Fibonacci Num-
bers

Given a sequence of integers S = {sg, $1, So, . . .}, a combinatorial interpretation
of S is a family F of objects (of various sizes) such that the number of objects in F
of size k is exactly counted by sy.

For example, a combinatorial interpretation of (Z) is as the number of subsets
of an {1,2,...,n} of size k.

A domino tiling of a rectangular region R is a covering of R by horizontal
(1-by-2) domino tiles and vertical (2-by-1) domino tiles such that every square of R
is covered by exactly one domino.



For example, if we let R be a 2-by-2 grid, then there are two possible domino
tilings. Either both tiles are vertical or both are horizontal. If we let R be a 2-by-3
grid, then there are three possible domino tilings, and a 2-by-4 grid would have five
such domino tilings.

Proposition. The number of domino tilings of a 2-by-n grid is counted by the
nth Fibonacci number, F;, for n > 1.

Proof. Let DT, denote the number of domino tilings of the 2-by-n grid. We
first check the initial conditions. There is one way to tile the 2-by-1 grid, and there
are two ways to tile the 2-by-2 grid. Thus D77 = 1 = F} and DT, = 2 = F5. (Recall
that Fy = 1, but we do not use this quantity in this combinatorial interpretation.)

Domino tilings of the 2-by-n grid either look like a domino tiling of the 2-by-
(n — 1) grid with a vertical tile tacked onto the end, or a domino tiling of the
2-by-(n — 2) grid with two horizontal tiles tacked onto the end. Consequently,
DT, = DT, _1 + DT,_,, the same recurrence as the F},’s.

Exercise 2: Show that this combinatorial interpretation can be rephrased as
the statement

F,, = The number of subsets S of {ay,a9,...,a,1}
such that a; and a;y; are not both contained in S.

1.3 Convolution Product Formula

In addition to adding formal power series together, we can also multiply them. If
A(X) =377 apa® and B(X) = > 72 bea®, where ay (resp. by) counts the number
of objects of type A (resp. B) and size k, then

AX)B(X) =C(X) =) cpa”
n=0
where ¢, = > _, arbn—k, and has a combinatorial interpretation as the number of

objects of size n formed by taking an object of type A and concatenating it with an
object of type B.



1.4 Connection between Linear Recurrences and Rational
Generating Functions

The behavior we saw of the Fibonacci numbers and its generating function is an

example of a more general theorem.

Theorem. (Theorem 4.1.1 of Enumerative Combinatorics 1 by Richard
Stanley) Let aj,as,...,aq be a fixed sequence of complex numbers, d > 1, and
ag # 0. The following conditions on a function f : N — C are equivalent:

i) The generating function F'(X) equals

> syt = 0

Q(x)
where Q(z) = 1+ a1z + azz? + ... + agz? and P(z) is a polynomial of degree < d.
ii) For all n > 0, f(n) satisfies the linear recurrence relation

fln+d)+arfiln+d—1)+asf(n+d—2)+ ...+ agf(n) =0.

iii) For all n > 0,

where
14+ oz + agx® + ... + agat = H(l — 7,x)°
i=1
with the 7;’s distinct and each P;(n) is a univariate polynomial (in n) of degree less

than e;.

Defintion. A generating function of the form % is a called a rational gen-

erating function.
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