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Lecture Notes # 1 Addendum by Gregg Musiker 

February 4th - 6th, 2009 

1 Recurrence Relations and Generating Functions 

Given an infinite sequence of numbers, a generating function is a compact way of 

expressing this data. We begin with the notion of ordinary generating functions. 

To illustrate this definition, we start with the example of the Fibonacci numbers. 

{Fn}
∞ 
n=0 = {F0, F1, F2, F3, . . .} 

defined by F0 = 1, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. 

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . 

We define 

F (X) := F0 + F1x + F2x 2 + F3x 3 + F4x 4 + . . . 

= 1 + x + 2x 2 + 3x 3 + 5x 4 + 8x 5 + . . . . 

In other words, F (X) is the formal power series 
� 

k

∞ 

=0 Fkx
k . 

Remark. This is called a “formal” power series because we will consider x to 

be an indeterminate variable rather than a specific real number. 

In general, given a sequence of numbers {ai}
∞
i=0 = {a0, a1, a2, a3, . . .}, the associ­

ated formal power series is 

∞

A(X) := akx k = a0 + a1x + a2x 2 + a3x 3 + . . . . 
k=0 

We will shortly write down F (X) in a compact form, but we begin with an easier 

example that you have already seen. 
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Recall that n = n! . For example, 
k k!(n−k)! 

� �88 
= {1, 8, 28, 56, 70, 56, 28, 8, 1}. 

k k=0 

In fact if k > 8, 
k 
8 (e.g. 

9
8 ) equals zero. Thus we can consider the entire infinite 

sequence as 

� 8 �∞ 

= {1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0, . . .},
k k=0 

and then the associated formal power series 

1 + 8x + 28x 2 + 56x 3 + 70x 4 + 56x 5 + 28x 6 + 8x 7 + x 8 + 0x 9 + 0x 10 + . . . 

can be written compactly as (1 + x)8 . 
� � 

∞ 

Generalizing this to any positive integer n, n

k has associated power series 
� � 

k=0 

(1 + x)n, since (1 + x)n = k

n 
=0 

n

k xk by the Binomial Theorem. 

This illustrates that from a formal power series, we can recover a sequence of 

numbers. We call these numbers the coefficients of the formal power series. For 

example, we say that n

k is the coefficient of xk in (1 + x)n . This is sometimes 

written as (1 + x)n 
�

� 

= n

k or [xk](1 + x)n = n

k . 
kx

1.1 More complicated formal power series 

We now want to write a similar expression for F (X) = 
� ∞ 

k=0 Fkx
k, where Fk = 

Fk−1 + Fk−2 for k ≥ 2 and F0 = F1 = 1. 

Notice that 
�

∞ ∞ ∞

akx k ± bkx k = (ak ± bk)x k . 
k=0 k=0 k=0 

As a consequence, Fk = Fk−1 + Fk−2 for k ≥ 2 implies 

∞

F (X) = 1 + F1x + Fkx k


k=2

∞

= 1 + F1x + (Fk−1 + Fk−2)x k 

k=2 

�

∞ ∞

= 1 + F1x + Fk−1x k + Fk−2x k 

k=2 k=2 

= 1 + F1x + xF (X) − F0x + x 2F (X). 
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Thus 

F (X)(1 − x − x 2) = 1 + (F1 − F0)x = 1 + 0x 

and we obtain the rational expression 

1 
F (X) = . 

1 − x − x2 

If we look at the Taylor series for this rational function, we indeed obtain coef­

ficients that are the Fibonacci numbers. Generating Functions are also helpful for 

obtaining closed formulas or asymptotic formulas. 

If we use partial fraction decomposition, we see that 

A B 
F (X) = + . 

1 − λ1x 1 − λ2x 

We know that (1 − λ1x)(1 − λ2x) = 1 − x − x2 so 

λ1λ2 = −1 and 

−λ1 − λ2 = −1 

Thus {λ1, λ2} = {1+
2 

√
5 , 1− 

2 

√
5 }. 

Exercise 1: Solve for A and B and use this to obtain a closed form expression 

for Fk. 

Notice that as a consequence we can compute that {Fk+1/Fk} = {1/1, 2/1, 3/2, 5/3, 8/5, 13/8, . . .} 

converges to 1+
2 

√
5 since 

� 

1− 

2 

√
5 
�k 

→ 0 as k → ∞, so 

Aλk+1 + Bλk+1 Aλk+1 
1 2 1 → = λ1. 

Aλk 
1 + Bλk 

2 Aλk 
1 

1.2	 A Combinatorial Interpretation of the Fibonacci Num­

bers 

Given a sequence of integers S = {s0, s1, s2, . . .}, a combinatorial interpretation 

of S is a family F of objects (of various sizes) such that the number of objects in F 

of size k is exactly counted by sk. 

For example, a combinatorial interpretation of n

k is as the number of subsets 

of an {1, 2, . . . , n} of size k. 

A domino tiling of a rectangular region R is a covering of R by horizontal 

(1-by-2) domino tiles and vertical (2-by-1) domino tiles such that every square of R 

is covered by exactly one domino. 



� 

For example, if we let R be a 2-by-2 grid, then there are two possible domino 

tilings. Either both tiles are vertical or both are horizontal. If we let R be a 2-by-3 

grid, then there are three possible domino tilings, and a 2-by-4 grid would have five 

such domino tilings. 

Proposition. The number of domino tilings of a 2-by-n grid is counted by the 

nth Fibonacci number, Fn for n ≥ 1. 

Proof. Let DTn denote the number of domino tilings of the 2-by-n grid. We 

first check the initial conditions. There is one way to tile the 2-by-1 grid, and there 

are two ways to tile the 2-by-2 grid. Thus DT1 = 1 = F1 and DT2 = 2 = F2. (Recall 

that F0 = 1, but we do not use this quantity in this combinatorial interpretation.) 

Domino tilings of the 2-by-n grid either look like a domino tiling of the 2-by­

(n − 1) grid with a vertical tile tacked onto the end, or a domino tiling of the 

2-by-(n − 2) grid with two horizontal tiles tacked onto the end. Consequently, 

DTn = DTn−1 + DTn−2, the same recurrence as the Fn’s. 

Exercise 2: Show that this combinatorial interpretation can be rephrased as 

the statement 

Fn = The number of subsets S of {a1, a2, . . . , an−1} 

such that ai and ai+1 are not both contained in S. 

1.3 Convolution Product Formula 

In addition to adding formal power series together, we can also multiply them. If 

A(X) = 
� 

k

∞ 

=0 akx
k and B(X) = 

� 

k

∞ 

=0 bkx
k, where ak (resp. bk) counts the number 

of objects of type A (resp. B) and size k, then 

∞

A(X)B(X) = C(X) = cnx n 

n=0 

where cn = 
�n akbn−k, and has a combinatorial interpretation as the number of k=0 

objects of size n formed by taking an object of type A and concatenating it with an 

object of type B. 
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1.4	 Connection between Linear Recurrences and Rational 
Generating Functions 

The behavior we saw of the Fibonacci numbers and its generating function is an 

example of a more general theorem. 

Theorem. (Theorem 4.1.1 of Enumerative Combinatorics 1 by Richard 

Stanley) Let α1, α2, . . . , αd be a fixed sequence of complex numbers, d ≥ 1, and 

αd 6 0. The following conditions on a function f : N → C are equivalent: = 

i) The generating function F (X) equals 

∞
P (x)

f(n)x n = 
Q(x)

n=0 

where Q(x) = 1 + α1x + α2x
2 + . . . + αdx

d and P (x) is a polynomial of degree < d. 

ii) For all n ≥ 0, f(n) satisfies the linear recurrence relation 

f(n + d) + α1f(n + d − 1) + α2f(n + d − 2) + . . . + αdf(n) = 0. 

iii) For all n ≥ 0, 
k 

f(n) = Pi(n)γi
n 

i=1 

where 
k 

1 + α1x + α2x 2 + . . . + αdx d = (1 − γix)ei 

i=1 

with the γi’s distinct and each Pi(n) is a univariate polynomial (in n) of degree less 

than ei. 

Defintion. A generating function of the form P (x) is a called a rational gen-
Q(x) 

erating function. 



MIT OpenCourseWare
http://ocw.mit.edu 

18.312 Algebraic Combinatorics
Spring 2009    
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



