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Lecture Notes # 7 Addendum by Gregg Musiker
February 18th, 2009

1 Mobius Function on Posets

This material closely follows selections from Chapter 3 of Enumerative Combina-
torics 1 by Richard Stanley.

1.1 New Posets from Old

If P and @ are posets on disjoint sets, then the disjoint union (or direct sum) of
P and @ is the poset P U Q (also denoted as P + @)) on the union of sets P and Q)
such that z <y in PUQ if either (1) z,y € Pand x <y in P or (2) z,y € @ and
r<yin Q.

The ordinal sum of two posets P @ @ (Q on top of P) is the poset whose
elements are the set P L@ with the property that x <y in P @ Q if either (1) z <y
in PUQor (2) x € Pand y € Q.

For example, an antichain on n elements is the direct sum of n copies of P, the
poset on one element, while a chain on n elements is the ordinal sum of n copies of
Py. A poset that can be built up by the two operations of direct sum and ordinal
sum from P; is known as a series-parallel poset.

Exercise 1: Find the unique four-element poset which is not a series-parallel

poset.

The direct product of posets P and @ is the poset P x @ on the set {(z,y) :
x € P,y € Q} such that (z,y) < (2/,¢) in Px Qif x <2/ in P and y < 3 in Q.
One can draw the Hasse diagram for P x () by first drawing the Hasse diagram of P
and then replacing each element x of P with a copy @, (¢, : Q. = Q) of the Hasse
diagram of ), and we connect element y of @, and vy’ of Q. iff ¢ 0 ¢ (y) = v/



(i.e. y and y' correspond to the same element of ()) and 2’ covers z. Observe that
PxQ=Qx P, and if P and @ are graded with rank-generating functions Fp(q)
and F(q), then

Fryo(q) = Fr(q)Fo(q).

See Section 4 of “Topics in Algebraic Combinatorics” by Richard Stanley for the
definition of a graded poset.

The dual of a poset P is a poset P* on the same set as P, but with order
relations reversed. That is, z < y in P iff y < x in P*.

An (induced) subposet @ of P is a subset of P such that for all z,y € Q, z <y
in @ if and only if z <y in P.

A (closed) interval [z,y] in a poset P is a special kind of subposet defined as
the set
2,y ={z € P:x<z<y}.

For example, the interval [z, 2] = {z} and the empty set is not an interval. If every
interval of P is finite, than P is called locally finite.

A (lower) order ideal 7 of a poset is a subposet which is closed under <, i.e.,
ifr €7 and y <z, then y € 7.

1.2 The Mobius Function in Number Theory

Before defining the Mobius function for more general posets, we discuss a family of
posets arising from number theory.

For any positive integer n, we let D,, be the poset of all divisors of n. We say
that dy < dy if dy|dy (dy divides dy). For example, if n = 12 then D, is given by
the figure below.
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1 Figure 1: Dy5’s Hasse Diagram



Notice that the poset D, is graded with rank equal to the number of prime
divisors (counting multiplicity) of n. The rank of a given element d in D, is also
equal to the number of prime divisors (counting multiplicity) of d.

To this poset, we define the (number theoretic) M&bius function to be

1 if n is a squarefree positive integer with an even number of distinct prime factors
fa(n) =< —1 if n is a squarefree positive integer with an odd number of distinct prime factors .
0 if n is not squarefree

The Mobius function arises in the formula for ¢(n), the number of integers in
{1,2,...,n} which are relatively prime (share no common factor) with n:

o) =St (5). )

din

For example,

6(12) = #{1,5.7,11}
= a(1)(12) + 4(2)(6) + 1(3)(4) + (4)(3) + A(6)(2) + 4(12)(1)
= 12-6-44+0+24+0
= 4.
We will discuss how to define Mobius functions for other posets, and techniques

for calculating this function. Applications will include the M&bius inversion formula
which can be used to demonstrate that formula (1) is equivalent to

n=> ¢(d), (2)

din

as well as the principle of inclusion-exclusion.

1.3 Mobius function of a poset

We define a map
w:PxP—1Z

by induction.

ple,z) = 1, forallxze P
ple,y) = — Z p(z,z), forall x <yin P.

r<z<y



An alternative way of expressing this definition is that p(z,y) is the unique func-
tion such that p(u, u) = 1 and sums to zero on larger intervals (i.e. > .\, ) u(u,v) =
0 for all v < v in P). This can be abbreviated as

Z p(w, v) = Oy
vE [u,w]
Example 1/Exercise 2: Show that for the poset P = D,,, u(1,d) = fi(d) for
all d dividing n.

Example 2: We calculate p(,S) for subset S, an element of poset B,. We
begin with Bs, starting with p(0,0) = 1. We use this to calculate p(0,{i;}) = —1
and then use diamond shape intervals (isomorphic to By) to show (0, {i1,i2}) = 1.
(Here i1,i5 € {1,2,3}.) Finally, Bs itself is an interval, and since the sum of all
values of the Mébius function must sum to zero, the value u(%,{1,2,3}) = —1.

Exercise 3: Generalize this argument to B,, and show that for alln >k > 1,

:U’((Z)v {7;17 i27 R Zk}) = <_1>k in poset Bn

Proposition (Mébius inversion formula): Let P be a finite poset. (In fact
this Proposition holds in more generality but we will not need this.) Let f,g: P —
C. Then

g(x) = Z f(y), forallz e P,

y>x
if and only if
flo)=>_gulx,y), foralze P,

y>z

Application: The Principle of Inclusion-Exclusion

Say that we have four sets A, B, C', D, not necessarily disjoint, and we wish
to count the number of elements in the union A U BU C U D. If we compute
|A| + |B| + |C| + |D|, any element in the intersection of two of these sets is double-
counted. However, if we compute

|A|+|B|+|C|+|D|—|ANB|—|ANC|—|ANnD|—|BNC|—|BND|-|CND,

then any element in the intersection of three of these sets is now undercounted. (If
x € AN BNC then z is counted three times in |A| 4 |B| + |C| and removed three



times by —|ANB| — |ANC|—|BNC|.) Thus we must add in the sum of the triple
intersections, and lastly we subtract the size of the full intersection |[ANBNCND].
In general, we have the formula

U

i€[n]

DA

SC[n]

ﬂA,-‘.

€S

Exercise 4 Show that this formula is an application of Mobius inversion applied
to the boolean poset B,,.
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