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1 Introduction to Partitions 

A partition of n is an ordered set of positive integers λ = (λ1, λ2, . . . , λn) such that 

λi = n and λ1 ≥ λ2 ≥ · · · ≥ λk.i 

Let P (n) denote the set of all partitions of n with p(n) = |P (n)| and p(0) = 1. For 

example, the partitions of 4 are {[4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1]}, so p(4) = 5. 

We have the following the identity of infinite products: 

∏ 1 ∏ 
= (1 + x k + x 2k + x 3k + . . . )

1 − xk 
k≥1 k≥1 

= (1 + x + x 2 + . . . )(1 + x 2 + x 4 + . . . )(1 + x 3 + x 6 + . . . ) · · · 

The coefficient of x n in this infinite product is p(n) since the term of (1 + x k + 

x2k + x3k + . . . ) that we pick in each factor determines how many times the number 

k appears as one of the λi’s in partition λ. Therefore, 

∏ 1 ∑ 
= p(n)x n . (1) 

1 − xk 
k≥1 n≥0 

2 Partitions with Odd or Distinct Parts 

As an application, we can also leave out some of the j’s from the index set for this 

product, thereby obtaining the generating function for the number of partitions not 

containing such j’s. 

For example, if we let po(n) denote the number of partitions with only odd parts, 

we get 

∏ 1 ∑ 
= po(n)x n . (2) 

1 − x2i−1 
i≥1 n≥0 
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Similarly, if we truncate the factor (1+xk+x2k +. . . ), we can enumerate partitions 

where k only appears with specified frequencies. 

For example, if we let pd(n) denote the number of partitions where all the λi’s 

are distinct, then 

n(1 + x k) = pd(n)x . (3) 
k≥1 n≥0 

However, there is an algebraic identity: 

∏ 1 ∏ (1 − x2k) 
= (4) 

1 − x2k−1 (1 − xk)
k≥1 k≥1 

= (1 + x k). 
k≥1 

Putting together identities (2), (3), and (4), we obtain a Theorem due to Euler, 

namely the result that po(n) = pd(n). 

3 A Combinatorial Proof of po(n) = pd(n) 

We now describe a combinatorial proof of Euler’s Theorem. Let Po(n) and Pd(n) 

denote the sets of partitions of n which have odd or distinct parts, respectively. We 

wish to find a bijection between Po(n) and Pd(n). 

Idea: Let λ ∈ Po(n) and for all odd k, let nk be the number of times k appears 

as a part of λ, i.e. ni = #{i : λi = k}. Since λ is a partition of a finite number, 

nk = 0 with a finite set of exceptions. 

We write each of the ni’s in binary: ni = 2mi,1 + 2mi,2 + · · · + 2mi,ri where mi,j1 

is different from mi,j2 for each j1 6 j2.=


We form a new partition λ ′ , defined as the rearrangement of


[2m1,1 λ1, 2
m1,2 λ1, . . . , 2

m1,r1 λ1, 2
m2,1 λ2, 2

m2,2 λ2, . . . ]. 

We claim that in general λ ′ (a) is a partition of n = |λ|, and (b) has distinct 

parts. 

(a) If we sum the parts of λ ′ , we can reorder and group the summands so that 

they correspond to the products niλi with ni written in binary. Thus the parts 

of λ ′ sum to the same number as the parts of λ. 

(b) Since the λi’s are all odd, each expression 2mi,j λi is the unique way of writing 

a certain integer after dividing through by the highest power of two. 
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We have thus shown a mapping from Po(n) into Pd(n). To show that this map 

is a bijection, we construct the inverse map: If n = µ1 + µ2 + · · · + µs is partition, 

using distinct parts, collect all µi’s with the same highest power of 2 and write down 

the odd parts with the appropriate multiplicity. 

Example: If λ = [79 , 55 , 16] = [78+1 , 54+1 , 38+4+2+1 , 14+2], then 

λ ′ = [8 · 7, 1 · 7, 4 · 5, 1 · 5, 8 · 3, 4 · 3, 2 · 3, 1 · 3, 4 · 1, 2 · 1] 

= [56, 24, 20, 12, 7, 6, 5, 4, 3, 2]. 

Exercise 1: Prove algebraically and combinatorially that the number of parti­

tions with no part divisible by k is equal to the number of partitions with no part 

appearing k times. 

4 Euler’s Pentagonal Theorem 

We now investigate the infinite product whose reciprocal is the generating function 

for the number of partitions of size n, namely: 

(1 − x k) = 1 − x − x 2 + x 5 + x 7 − x 12 − x 15 + x 22 + x 26 − x 35 − x 40 ± . . . 

k≥1 

Observations: 

1) All coefficients lie in {−1, 0, 1} and the signs satisfy a simple periodic behavior. 

2) The exponent sequence 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, . . . can be split into 

two subsequences, the second of which consists of the pentagonal numbers 1, 5, 12, 22, 35, . . . 

described by the formula f(j) = 3j2

2 
−j . 

This sequence has such a name because if one draws a regular pentagon where 

each side has precisely j − 1 dots, than the entire pentagon consists of 3j2

2 
−j dots. 

This motivates 

2 2Euler ′ s Pentagonal Theorem : (1 − x k) = 1 + (−1)j (x 
3j2−j 

+ x 
3j2+j 

). 
k≥1 j≥1 

As an application, we can inductively compute p(n). For example, 

p(6) = p(5) + p(4) − p(1) = 7 + 5 − 1 = 11, and 

p(7) = p(6) + p(5) − p(2) − p(0) = 11 + 7 − 2 − 1 = 15 

Exercise 2: Use Euler’s Pentagonal Theorem to calculate p(8), p(9), and p(10). 
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5 Proof of Euler’s Theorem 

Q 1 ∑ 
n 

∑ 
k)We use the fact that 

(1−xk ) = n≥0 p(n)x . Thus if we write k≥1(1 − x = 
k≥1

n≥0 c(n)xn, then 

( c(n)x n)( p(n)x n) = 1. 
n≥0 n≥0 

Comparing coefficients, we find that the sequence of c(n)’s must satisfy c(0) = 1 and 
n 
k=0 c(k)p(n − k) = 0 for all n ≥ 1. This initial condition and recurrence uniquely 

determines the sequence of c(n)’s. 

Consolidating terms, we can write the right-hand-side of Euler’s Pentagonal The­
∑∞ 3j2+j 

orem as j=−∞
(−1)jx 2 , so it suffices to show that 

 
1 if k = 3j2+j and j is even 
 2 

c(k) = −1 if k = 3j2

2
+j and j is odd . 

 


0 otherwise 

If we let b(j) = 3j2

2
+j for all j ∈ Z, then we wish to show for all n that 

p(n − b(j)) − p(n − b(j)) = 0, 
j even and b(j)≤n j odd and b(j)≤n 

which we rewrite as 

p(n − b(j)) = p(n − b(j)). 
j even and b(j)≤n j odd and b(j)≤n 

We thus want a bijection 

⋃ ⋃ 
φ : P (n − b(j)) → P (n − b(j)). 

j even j odd 

We present such a bijection as constructed by Bressoud-Zeilberger. This bi­

jection is actually an involution, φ(φ(λ)) = λ so φ is its own inverse. For λ = 

[λ1, λ2, . . . , λt] ∈ P (n − b(j)) (we remind the reader that λ1 ≥ λi for all i), we set 

[(t + 3j − 1), (λ1 − 1), (λ2 − 1) . . . , (λt − 1)] if t + 3j ≥ λ1 
φ(λ) = , 

[(λ2 + 1), . . . , (λt + 1), 1, 1, . . . , 1] if t + 3j < λ1 

where there are λ1 − t − 3j − 1 copies of 1 in the second case. 
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Notice that if t + 3j ≥ λ1, then φ(λ) is a partition of


t + 3j − 1 + (λ1 − 1) + (λ2 − 1) + · · · + (λt − 1)


= t + 3j − 1 + λi − t = 3j − 1 + λi 

i i 

3j2 + j 
= n − b(j) + 3j − 1 = n − + (3j − 1) 

2 
−3j2 + 5j − 2 

= n + = n − b(j − 1). 
2 

By similar logic, if t + 3j < λ1, we see that φ(λ) is a partition of n − b(j + 1). Thus 

φ maps elements of P (n− b(j)) to an element of P (n − b(j ± 1)). By inspection, we 

see that φ2 = identity, and we conclude that φ is the desired bijection. 

Example: We calculate φ([4, 2, 1]) = [8, 3, 1] for n = 14 and j = 2, which is a 

partition of 12 = n − b(1). 

Exercise 3: Calculate φ([3, 3, 2, 1, 1, 1]) for n = 37 and j = 4. 

Solution on next page: 



The solution is [17, 2, 2, 1], a partition of n − b(3) = 22.
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