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Course 18.312: Algebraic Combinatorics


Lecture Notes # 18-19 Addendum by Gregg Musiker 

March 18th - 20th, 2009 

The following material can be found in a number of sources, including Sections 

7.3− 7.5, 7.7, 7.10− 7.11, 7.15− 16 of Stanley’s Enumerative Combinatorics Volume 

2. 

1	 Elementary and Homogeneous Symmetric Func­

tions 

A polynomial in n variables, P (x1, x2, . . . , xn) ∈ C[x1, x2, . . . , xn] is known as a 

symmetric polynomial if for any permutation σ ∈ Sn, P (xσ(1), xσ(2), . . . , xσ(n)) = 

P (x1, x2, . . . , xn). 

An important family of symmetric polynomials is the family of elementary 

symmetric functions. 

ek = ek(x1, x2, . . . , xn) :=	 xi1 xi2 · · · xik 
. 

1≤i1<i2<···<ik≤n 

Notice that e0 = 1, ek(x1, x2, . . . , xn) = 0 if k > n and the number of terms in 

ek(x1, x2, . . . , xn) is n

k 
. If λ = [λ1, λ2, . . . , λℓ] is a partition, eλ := eλ1 · eλ2 · · · eλℓ 

. 

(Fundamental Theorem of Symmetric Functions) Any symmetric poly­

nomial with coefficients in C can be written as a C-linear combination of the eλ’s. 

Furthermore, any symmetric polynomial with coefficients in Z can be written as a 

Z-linear combination of the eλ’s. 

We will not prove this theorem but will illustrate it for a few important examples 

of symmetric functions. 

Let E(t) := 
�∞ 

k=0 ekt
k . Then E(t) = 

� 

i(1+xit). In particular, if we are working 

with symmetric polynomials in n variables, then i ranges over {1, 2, . . . , n} in this 
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product. 

Another important family of symmetric functions is family of homogeneous 

symmetric functions, defined as 

hk = hk(x1, x2, . . . , xn) := xi1 xi2 · · · xik 
. 

1≤i1≤i2≤···≤ik≤n 

Similarly we let hλ = hλ1 · hλ2 · · · hλℓ
, h0 = 1, h1 = e1, and the number of terms in 

hk(x1, x2, . . . , xn) is ( n

k 
), the number of k-element multisets of {1, 2, . . . , n}. 

�∞ � 

Let H(t) := k=0 hkt
k . Then H(t) = i (1−

1 
xit) . As a consequence we get the 

following result. 

Theorem. We have the identity for all k ≥ 1: 

k 

(−1)k eihk−i = 0. 
i=0 

Proof. From the above, we see that H(t)E(−t) = 1 so the convolution 

k 
� 1 if k = 0 

(−1)i eihk−i = . 
0 if k ≥ 1 

i=0 

As a corollary, we get that 

k 

hk = (−1)i−1 eihk−i. 

i=1 

Thus by induction, we get explicit expressions for hk as a polynomial in terms of e1 

through ek. 

Since these identities are true regardless of the number of variables appearing in 

the polynomials, these are symmetric function identities rather than simply identi­

ties of polynomials. 

2 Power symmetric functions 

We define 

pk = pk(x1, x2, . . . , xn) := x1 
k + x2 

k + · · · + x n
k , 



� 

� 

� 

� 

the power symmetric functions, with pλ = pλ1 · pλ2 · · · pλℓ 

Theorem. These functions satisfy the Newton-Girard identities for all k ≥ 1: 

k 

kek = (−1)i−1 ek−ipi 

i=1 

k 

khk = hk−ipi. 

i=1 

Proof. We prove the second identity, involving the power symmetric functions and 

the homogeneous symmetric functions. Let 

∞ 

P (t) = pkt
k . 

k=1 

Notice that 
� � ∞ 

d
H(t) = H ′ (t) = khkt

k−1 , 
dt 

k=0 

and the logarithmic derivative 

H ′ (t) 

H(t) 
= 

d 

dt 

� 

log H(t) 

� 

= 
d 

dt 

� 

log 
� 

i 

(1 − xit)
−1 

� 

� � 

d � 

= 
dt 

− log(1 − xit) 
i 

d 
� 

� 

∞ 
� (xi t)

j
� 

= 
dt 

i j=1 
j 

∞ � � 

� � 

= x
j 
i t

j−1 

j=1 i 

= 
∞ 

� 

pkt
k−1 = 

P (t) 
. 

t 
k=1 

Thus P (t)H(t) = tH ′ (t) and each coefficient of tk in the convolution on the LHS, 
�k 

hk−ipi, eqauls the coefficient of tk−1 in H ′ (t), namely khk.i=1 

The proof of the first identity is analogous. We leave it to the reader. 

As above, we can use these identities like these to rewrite pk’s in terms of eλ’s 

or hλ’s, respectively, or vice-versa. First we introduce some notation. 

For i ≥ 1, let mi = mi(λ) copies of the number i in λ. (Note that mi = 0 for 
�∞

i > |λ|.) zλ = i=1 i
mi · (mi)!. Let ǫλ = (−1)m2+m4+m6+... . 
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Lemma. If λ ⊢ n and has ℓ nonzero parts, then ǫλ = (−1)n−ℓ . In particular, ǫλ 

is the sign of the permutation that contains mi(λ) i-cycles (for i ≥ 1). 

Proof. Left to the reader. 

Using this notation we obtain the following result. 

Theorem. 

� pλ
hk = 

zλ
λ⊢k 
� pλ 

ek = ǫλ 
zλ

λ⊢k 

Proof. We saw in the last proof that 

d P (t)
log H(t) = . 

dt t 

As a consequence, 
∞ � ∞ � 

k pk khkt = exp t . 
k 

k=0 k=1 

The exponential of a series, exp( 
�∞ 

k=1 akt
k) = exp(A(t)) equals the sum 

�∞ 
i=0 

A(
i

t

!
)i 

, 

which can be rewritten as the double sum 

∞ � � 

� � i (a1t)
r1 (a2t

2)r2 · · · (ait
i)ri 

r1, r2, . . . , ri i! 
i=0 unordered compostion r1+r2+r3+···+ri =i


each rj is a nonnegative integer


after expanding each term by the multinomial theorem. 

Since the order of the composition does not matter, and only nonzero parts 

contribute to the summands, we can think of these rj’s as the number of j’s in a 

partition λ ⊢ i, i.e. each such composition gives rise to a λ so that rj = mj(λ). We 

then use the above notation to rephrase this sum as 

∞ 
�

� � m1 mi 
� i (a1 a m2 

2 · · · ai ) ti 
exp(A(t)) = . 

m1, m2, . . . , mi i! 
i=0 λ⊢i 

�∞ pk 
� 

pλWe leave as an exercise that the coefficient of tk in exp k=1 k 
tk is λ⊢k zλ 

. 
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3 Monomial Symmetric Functions 

An even simpler family of symmetric functions is the family of monomial symmetric 

functions. 

mλ = mλ(x1, x2, . . . , xn) := x α1 
1 x α2 

2 · · · x αn 
n 

[α1,α2,...,αn] is a rearrangement of [λ1,λ2,...,λℓ,0,0,...,0] 

if n > ℓ, the number of nonzero parts in λ, and we set mλ(x1, x2, . . . , xn) to be zero 

otherwise. 

(Note that when we think of mλ as a formal symmetric function, i.e. in an 

infinite number of variables, this second case never occurs.) 

Remark. Note that unlike the eλ’s, hλ’s and pλ’s, mλ 6= mλ1 · mλ2 · · · mλn 
. 

Observation. en = m[1n], pn = m[n], and hn = λ⊢n mλ. 

4 Schur Functions 

We define a fifth family of symmetric functions by using determinants. Let Δ(x1, x2, . . . , xn) 

denote the determinant of the matrix 
  

1 1 1 . . . 1 
 x1 x2 x3 . . . xn 
  

 2 2 2 2  

aδ = 
 

x1 x2 x3 . . . xn . 
 

 . . . . .  . . . . . 
 . . . . .  

n−1 n−1 n−1 n−1x1 x2 x3 . . . xn 

Theorem. 

Δ(x1, x2, . . . , xn) = (xj − xi). 
1≤i<j≤n 

Furthermore, Δ(x1, x2, . . . , xn) is the nonzero polynomial with smallest degree and 

the property that 

Δ(xσ(1), xσ(2), . . . , xσ(n)) = sgn(σ)Δ(x1, x2, . . . , xn) 

for any permutation σ ∈ Sn. In particular, if σ is a transposition that just switches 

xi and xj , we get −Δ(x1, x2, . . . , xn) on the RHS. 



Such a polynomial is called an alternating polynomial, and it follows from 

above that all alternating polynomials must be divisible by Δ(x1, x2, . . . , xn). We 

can build other alternating polynomials by taking the determinant of 
 λn λn λn 



λnx1 x2 x3 . . . xn 

 

λn−1 +1 λn−1 +1 λn−1+1 λn−1+1 
. . . 

 

x1 x2 x3 xn 
 

 

λn−2 +2 λn−2 +2 λn−2+2 λn−2+2  

aλ+δ = 
 

x1 x2 x3 . . . xn  
, 

 . . . . .  . . . . . 
 . . . . .  

λ1+(n−1) λ1+(n−1) λ1 +(n−1) λ1+(n−1) 
x x x . . . x1 2 3 n 

for any partition λ = [λ1, λ2, . . . , λn] with at most n parts, written in weakly de­

creasing order. 

Consequently, the quotient 

det(aλ+δ) 
sλ = sλ(x1, x2, . . . , xn) = 

det(aδ) 

is the quotient of two alternating polynomials, and is in fact a symmetric polynomial 

(function). We call these sλ’s Schur functions. 

Remark. Note that like the mλ’s, sλ 6= sλ1 · sλ2 · · · sλn 
. 

The Schur functions are very important in the theory of representation theory of 

Sn and GLn. We will not discuss such connections further in the course, although 

there are many possible final projects on this topic. 

There is a beautiful formula for writing the sλ’s in terms of the hµ’s (equivalently 

the eµ’s). The following two formulas are known as the Jacobi-Trudi Identity. 

Theorem. If λ has ℓ nonzero parts, let JTℓ be the ℓ-by-ℓ matrix whose (i, j)th 

entry is hλi−i+j , where we set h0 = 1 and h−k = 0 for k < 0. Then 

sλ = det JTℓ. 

Recall that λT is the conjugate (or transpose) of λ. Let JTℓ 
′ be the matrix whose 

(i, j)th entry is eλi−i+j. Then we also obtain 

′ sλT = det JTℓ . 

Example. 
    

h4−1+1 h4−1+2 h4−1+3 h4 h5 h6 

s4,1(x1, x2, x3) = det h1−2+1 h1−2+2 h1−2+3  = det  1 h1 h2
 . 

h0−3+1 h0−3+2 h0−3+3 0 0 1 
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Proof. We let ej 
(ℓ) 

denote the jth elementary symmetry function on the alphabet 

{x1, x2, . . . , xℓ−1, xℓ+1, . . . , xn}. 

� �� n−1 � n n 

hit
i ej 

(ℓ)
(−t)j =

1 −

1 

xit	
(1 − xmt) 

i≥0 j=0 i=1	 m=1

m�
=ℓ 

1	 2 2 = = 1 + xℓt + xℓ t + . . . 
1 − xℓt 

As a special application, we take the coefficient of tαi on both sides and obtain 

n−1 n 
� 

(ℓ) 
� 

(ℓ) αihαi−je (−1)j = hαi−n+je (−1)n−j = xj n−j ℓ . 

j=0 j=1 

This identity implies the matrix equation 

HαE = Aα, 

where we let the entries of Aα be xj
αi ’s, the entries of Hα be hαi−n+j’s and the entries 

of E be (−1)n−ien
(j
−
) 
i’s. 

If we let α = [n − 1, n − 2, . . . , 2, 1, 0] (resp. λ + [n − 1, n − 2, . . . , 2, 1, 0]), the 

right-hand-side gives precisely the entries of the matrix appearing in the denominator 

(resp. numerator) of the Schur function. 

It suffices to show that det E = det A[n−1,n−2,...,2,1,0] = Δ(x1, x2, . . . , xn), and thus 

we obtain 
det Aλ+[n−1,n−2,...,2,1,0] 

det Hλ+[n−1,n−2,...,2,1,0] = . 
det A[n−1,n−2,...,2,1,0] 

The formula det E = det A[n−1,n−2,...,2,1,0] follows from the fact that A[n−1,n−2,...,2,1,0] = 

H[n−1,n−2,...,2,1,0]E and H[n−1,n−2,...,2,1,0] is an upper triangular matrix with ones on 

the diagonal. We saw det A[n−1,n−2,...,2,1,0] = Δ(x1, x2, . . . , xn) above. 

We close these notes with an alternative, more combinatorial definition, of Schur 

functions. 

We begin by generalizing the definition of Standard Young Tableaux (SYT). 

Recall that a SYT of shape λ, λ ⊢ n, is a filling of a Young diagram of shape λ 

using exactly the numbers {1, 2, . . . , n} such that the numbers in each row increase 

as we proceed to the right, and the numbers in each column increase as we proceed 

downwards. 



� 

A Semi-standard Young Tableaux (SSYT) of shape λ using no number 

smaller than 1 or larger than n is a filling of the Young diagram so that the numbers 

in each row weakly increase and the numbers in each column strictly decrease. 

�n #i ′ s appearing in TWe define the weight xT of a SSYT T to be the product i=1 xi . 

Theorem. 

sλ(x1, x2, . . . , xn) = xT . 

SSYT T of shape λ using no number outside 1≤i≤n 

Proof. Omitted. 

The proof of this theorem along with associated results or applications of SSYT 

is a possible final project. 
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