Course 18.312: Algebraic Combinatorics

Lecture Notes # 23-24 Addendum by Gregg Musiker
April 6th - 8th, 2009

The following is an outline of the material covered April 6th and 8th in class.
This material can be found in Chapter 5 of Stanley’s Enumerative Combinatorics
Volume 2. Proofs of most of the results are in class notes.

1 Exponential GGenerating Functions

Definition. Given f, g : N — Z, which we think of as counting objects of sizes k in
two set F and G, respectively, we define a new function A : N — Z by the following:

h(#X) =Y [(#S)g(#T)

(5,7)
where X is a finite set and (S, T') disjointly partition X, i.e. SNT = () and SUT = X.
Sets S and T are allowed to be empty.

Definition. We define the exponential generating function of sequence

{£(n)} to be .
By(x) =Y f(n)=.

n>0
Proposition.
Ep(x) = Ef(x)Eg(2).

The following is Corollary 5.1.6 of Stanley’s Enumerative Combinatorics 2.

Theorem. (The Exponential Formula) Given f : {1,2,...} — Z, define a new
function h : N — Z by h(0) = 1 and

W#S) =D > f#Bi)f(#Bs) - f(#By)

k>1 B,....Bx



for #5 > 1. Here, the sum is over partitions of S, i.e. B; N B; = () for all i # j. We
assume these blocks B; are non-empty, and By U Bo U---U B, = 5. Then

Ep(z) = exp(Ef(z)).
The following is Corollary 5.1.8 of Stanley’s Enumerative Combinatorics 2.

Theorem. (Permutation Version of the Exponential Formula) Given f : {1,2,...} —
Z, define a new function h: N — Z by h(0) = 1 and let n = #S,

h(n) =Y FH#C)F(#Ca) -+ f(#Ch)

WESn

for #5 > 1. Here, the C;’s are the cycles, thought of as sets of .S, in the disjoint
cycle decmposition of 7. Then

Bu(x) = exp(Y F(m) ).

n>1

Application: The nubmer of simple graphs on n vertices is 2(3) and we let c(n)
be the number of connected graphs on n vertices.

exp(3 c(n)%) - Zz(’%)%.

n>1 n>0

2 Tree Enumeration

A tree is an undirected graph with no cycles. A tree is rooted if it has a distin-
guished vertex (called the root).

Let T,, = # labeled trees on n vertices.
Let t,, = # labeled rooted trees on n vertices.

A forest is a disjoint union of trees. A rooted forest is a collection of rooted
trees, one root for each tree.

Let f,, = # of rooted labeled forests on n vertices.

Claim: T,.,, = f, and t,, = nT,,.



Bijective Proofs: Peel off root, labeled (n + 1) of a rooted tree and left with a
rooted forest. A rooted tree is a choice of a labeled tree plus a choice of a vertex to
be the root.

A Rooted Forest is a collection of rooted trees, so we can use the exponential
formula to count. Let

y=Ei(x Zt— and E(z an

n>1 n n>0

E¢(x) = exp(y). On the other hand, b1 = (n + 1)fn, SO

cEy(x Z fn Zth = Ey(x) =y.

n>0

Thus y = E;(z) satisfies xze? = y. We can solve this identity in a way that allows us
to compute coefficients of y using a technique known as the Lagrange Inversion

Formula.

But first, we compute t,,’s combinatorially:

n (n—1)! . .
d17d27---7dn) = Tar.q rooted trees on {1,2,...,n} in which

vertex i has outdegree d;, where the outdegree of a vertex v; is the number of its

Claim. There are (

neighbors further away from the root. These neighbors are called children and the

unique neighbor closer to the root is called a parent. A vertex with no children is
called a leaf. (Notice that Y ,d; =n —1.)

We prove this claim using the Priifer code. Start with a rooted labeled tree T'.
1. Locate the leaf with the smallest label.

2. Write down the label of its unique parent. Delete this leaf and its adjoing
edges.

3. Go to step 1.

Application: The Priifer code gives bijections between desired set of sequences
and rooted trees with specified outdegrees.

Corollary. t(n) = n"~!, the number of sequences of length (n — 1) on n letters.

Corollary (Cayley’s Theorem). T(n) = n" % the number of (unrooted)
labeled trees on n vertices.



Remark. The Catalan numbers count binary trees in several different ways.

3 Statement of Lagrange Inversion

Given a formal power series f(z) = a1z + apx® + azz® + ..., we say that f(z) has
a compositional inverse U (x) = g(z) = bix + bya?® + ba® + ... if f(g(v)) =
9(f(z)) = .

Proposition. f(z) has a compositional inverse iff a; # 0. In this case, the

compositional inverse is unique.

Note that
ay (b x+box® +b3a®+. . ) tag(biz+byr®+. . ) +az(bio+. .. )*+- - - = 2+02*+02°+. . .
if and only if

albl = 1
albg + agb% =0
arbs + 2asbiby + azb} = 0

Theorem (Lagrange Inversion Formula). In particular,

" FCD () = %[xn_l] (fo))n

where the right-hand-side can be written equivalently as L[z ]F(z)™".

—1 k+1

Exercise 1: Let F'(z) =), xk—lf and show that FV(z) = P %xk
(Hint: You will also recognize these as power series of familiar functions.

Exercise 2: Let F(r) = ze™® and we have E,(z) = FV(z). Also

n—1

l[zn—1]< T >n _ l n_l]em _ l nn—1 n

n xe n[x n(n—1)! T

Consequently, we obtain a second proof that t, = n"~ 1.
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