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Exercises 3
(1)	 (a) [1+] Let ψG(t) be the characteristic polynomial of the graphical arrange­

ment AG. Suppose that ψG(i) = 0, where i ≤ Z, i > 1. Show that 
ψG(i− 1) = 0. 

(b) [2] Is the same conclusion true for any central arrangement A? 
(2) [2] Show that if F and F � are flats of a matroid M , then so is F ⊕ F � . 
(3) [2] Prove the assertion in the Note following the proof of Theorem 3.8 that an 

interval [x, y] of a geometric lattice L is also a geometric lattice. 
(4) [2+] Let A be an arrangement (not necessarily central). Show that there exists 

a geometric lattice L and an atom a of L such that L(A) ∪= L − Va, where 
Va = {x ≤ L : x ⊂ a}. 

(5) [2–] Let L be a geometric lattice of rank n, and define the truncation T (L) to 
be the subposet of L consisting of all elements of rank = n− 1. Show that T (L)⇔
is a geometric lattice. 

(6) Let Wi be the number of elements of rank i in a geometric lattice (or just in the 
intersection poset of a central hyperplane arrangement, if you prefer) of rank n. 
(a) [3] Show that for k → n/2, 

W1 + W2 + + Wk Wn−k + Wn−k+1 + + Wn−1.· · · →	 · · ·
(b) [2–] Deduce from (a) and Exercise 5 that W1 → Wk for all 1 k → n− 1.→
(c) [5] Show that Wi Wn−i for i < n/2 and that the sequence W0,W1, . . . ,Wn→

is unimodal. (Compare Lecture 2, Exercise 9.) 
(7) [3–] Let x → y in a geometric lattice L. Show that µ(x, y) = ±1 if and only if 

the interval [x, y] is isomorphic to a boolean algebra. (Use Weisner’s theorem.) 
Note. This problem becomes much easier using Theorem 4.12 (the Broken 
Circuit Theorem); see Exercise 13. 
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Exercises 4
(1) [2–] Let M be a matroid on a linearly ordered set. Show that BC(M) = BC( �M), 

where �M is defined by equation (23). 
(2) [2+] Let M be a matroid of rank at least one. Show that the coefficients of the 

polynomial ψM (t)/(t − 1) alternate in sign. 
(3)	 (a) [2+] Let L be finite lattice for which every element has a unique comple­

ment. Show that L is isomorphic to a boolean algebra Bn. 
(b) [3] A lattice L is distributive if 

x ⇒ (y ∈ z) = (x ⇒ y) ∈ (x z)⇒ 

x ∈ (y ⇒ z) = (x ∈ y) ⇒ (x ∈ z) 

for all x, y, z ≤ L. Let L be an infinite lattice with ˆ 1. If every element 0 and ˆ

of L has a unique complement, then is L a distributive lattice? 
(4) [3–] Let x be an element of a geometric lattice L. Show that the following four 

conditions are equivalent. 
(i)	 x is a modular element of L. 
(ii) If x ∈ y = 0̂, then 

rk(x) + rk(y) = rk(x ⇒ y). 

(iii) If x and y are complements, then rk(x) + rk(y) = n. 
(iv) All complements of x are incomparable. 

(5) [2+] Let x, y be modular elements of a geometric lattice L. Show that x ∈ y is 
also modular. 

(6) [2] Let L be a geometric lattice. Prove or disprove: if x is modular in L and y 
is modular in the interval [x, ̂1], then y is modular in L. 

(7) [2–] Let L and L� be finite lattices. Show that if both L and L� are geometric 
(respectively, atomic, semimodular, modular) lattices, then so is L × L� . 

(8) [2] Let G be a (loopless) connected graph and v ≤ V (G). Let A = V (G) − v and 
β = {A, v} ≤ LG. Suppose that whenever av, bv ≤ E(G) we have ab ≤ E(G). 
Show that β is a modular element of LG. 

(9) [2+] Generalize the previous exercise as follows.	 Let G be a doubly-connected 
graph with lattice of contractions LG. Let β ≤ LG. Show that the following two 
conditions are equivalent. 
(a)	 β is a modular element of LG. 
(b)	 β satisfies the following two properties: 

(i) At most one block B of β contains more than one vertex of G. 
(ii) Let H be the subgraph induced by the block B of (i). Let K be any 

connected component of the subgraph induced by G − B, and let H1 

be the graph induced by the set of vertices in H that are connected 
to some vertex in K. Then H1 is a clique (complete subgraph) of G. 

(10) [2+] Let L be a geometric lattice of rank n, and fix x ≤ L. Show that 

ψL(t) = 
� 

µ(y)ψLy (t)t
n−rk(x∞y), 

y⊆L 
x≥y=0̂ 

where Ly is the image of the interval [0̂, x] under the map z �∃ z ⇒ y. 
(11) [2+] Let	 I(M) be the set of independent sets of a matroid M . Find another 

matroid N and a labeling of its points for which I(M) = BCr (N), the reduced 
broken circuit complex of N . 
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(12)	 (a) [2+] If � and � are simplicial complexes on disjoint sets A and B, respec­
tively, then define the join � ∼ � to be the simplicial complex on the set 
A ∅ B with faces F ∅ G, where F ≤ � and G ≤ �. (E.g., if � consists of 
a single point then � ∼ � is the cone over �. If � consists of two disjoint 
points, then � ∼ � is the suspension of �.) We say that � and � are join-
factors of � ∼�. Now let M be a matroid and S ⊇ M a modular flat, i.e., S 
is a modular element of LM . Order the points of M such that if p ≤ S and 
q ⇔≤ S, then p < q. Show that BC(S) is a join-factor of BC(M). Deduce 
that ψM (t) is divisible by ψS (t). 

(b) [2+] Conversely, let M be a matroid and S ⊇ M . Label the points of M so 
that if p ≤ S and q ⇔≤ S, then p < q. Suppose that BC(S) is a join-factor of 
BC(M). Show that S is modular. 

(13) [2] Do Exercise 7, this time using Theorem 4.12 (the Broken Circuit Theorem). 
(14) [1] Show that all geometric lattices of rank two are supersolvable. 
(15) [2] Give an example of two nonisomorphic supersolvable geometric lattices of 

rank 3 with the same characteristic polynomials. 
(16) [2] Prove Proposition 4.11: if G is a graph with blocks G1, . . . , Gk , then L =G 

∪
LG1 Gk .× · · · × L

(17) [2+] Give an example of a nonsupersolvable geometric lattice of rank three whose 
characteristic polynomial has only integer zeros. 

(18) [2] Let L1 and L2 be geometric lattices. Show that L1 and L2 are supersolvable 
if and only if L1 × L2 is supersolvable. 

(19) [3–] Let L be a supersolvable geometric lattice. Show that every interval of L is 
also supersolvable. 

(20) [2] (a) Find the number of maximal chains of the partition lattice Γn. 
(b) Find the number of modular maximal chains of Γn. 

(21) Let M be a matroid with a linear ordering of its points. The internal activity of 
a basis B is the number of points p ≤ B such that p < q for all points q = p not⇔
in the closure B − p of B−p. The external activity of B is the number of points 
p ≤ M −B such that p� < q� for all q = p� contained in the unique circuit that ⇔
is a subset of B ∅ {p� . Define the Crapo beta invariant of M by }

λ(M) = (−1)rk(M )−1ψ � 
M (1),


where � denotes differentiation.

(a) [1+] Show that 1−ψ � 

M (1) = ξ(BCr ), the Euler characteristic of the reduced 
broken circuit complex of M . 

(b) [3–] Show that	λ(M) is equal to the number of bases of M with internal 
activity 0 and external activity 0. 

(c) [2] Let A be a real central arrangement with associated matroid MA. Sup­
pose that A = cA� for some arrangement A�, where cA� denotes the cone 
over A� . Show that λ(MA) = b(A�). 

(d) [2+] With A as in (c), let H � be a (proper) translate of some hyperplane 
H ≤ A. Show that λ(MA) = b(A ∅ {H �}). 




