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Exercises 3

(1)

(2)
3)

(4)

(5)

(a) [14] Let x(t) be the characteristic polynomial of the graphical arrange-
ment Ag. Suppose that xg(i) = 0, where ¢ € Z, ¢ > 1. Show that
xa(i—1)=0.

(b) [2] Is the same conclusion true for any central arrangement A?

[2] Show that if F' and F” are flats of a matroid M, then so is F'N F”.

[2] Prove the assertion in the Note following the proof of Theorem 3.8 that an

interval [x,y] of a geometric lattice L is also a geometric lattice.

[2+] Let A be an arrangement (not necessarily central). Show that there exists

a geometric lattice L and an atom a of L such that L(A) & L — V,, where
Vo={ze€L:x>a}l
[2-] Let L be a geometric lattice of rank n, and define the truncation T(L) to
be the subposet of L consisting of all elements of rank # n — 1. Show that T'(L)
is a geometric lattice.
Let W; be the number of elements of rank ¢ in a geometric lattice (or just in the
intersection poset of a central hyperplane arrangement, if you prefer) of rank n.
(a) [3] Show that for k <n/2,

Wi+Wot o+ Wi, Wy ko +Whpr1 +--+ W1,

(b) [2-] Deduce from (a) and Exercise 5 that W7 < Wy, for all 1 <k <n — 1.
(c) [5] Show that W; < W,,_; for i < n/2 and that the sequence Wy, W1,..., W,
is unimodal. (Compare Lecture 2, Exercise 9.)
[3-] Let © < y in a geometric lattice L. Show that u(x,y) = £1 if and only if
the interval [z, y] is isomorphic to a boolean algebra. (Use Weisner’s theorem.)
Note. This problem becomes much easier using Theorem 4.12 (the Broken
Circuit Theorem); see Exercise 13.
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Exercises 4 -

(1) [2-] Let M be a matroid on a linearly ordered set. Show that BC(M) = BC(M),
where M is defined by equation (23).

(2) [2+] Let M be a matroid of rank at least one. Show that the coefficients of the
polynomial x(¢)/(t — 1) alternate in sign.

(3) (a) [2+] Let L be finite lattice for which every element has a unique comple-

ment. Show that L is isomorphic to a boolean algebra B,,.

(b) [3] A lattice L is distributive if

xV(yAz) = (xVy A(xVz)
zA(yVz) = (xAy)V(zAz)

for all 2,y, z € L. Let L be an infinite lattice with 0 and 1. If every element
of L has a unique complement, then is L a distributive lattice?
(4) [3-] Let = be an element of a geometric lattice L. Show that the following four
conditions are equivalent.
(i) « is a modular element of L.
(i) If x Ay = 0, then

rk(x) + rk(y) = rk(z V y).

(iii) If  and y are complements, then rk(z) + rk(y) = n.
(iv) All complements of x are incomparable.

(5) [2+] Let x,y be modular elements of a geometric lattice L. Show that x A y is
also modular.

(6) [2] Let L be a geometric lattice. Prove or disprove: if « is modular in L and y
is modular in the interval [z, 1], then y is modular in L.

(7) [2-] Let L and L' be finite lattices. Show that if both L and L’ are geometric
(respectively, atomic, semimodular, modular) lattices, then so is L x L.

(8) [2] Let G be a (loopless) connected graph and v € V(G). Let A =V (G)—v and
m = {A,v} € Lg. Suppose that whenever av,bv € E(G) we have ab € E(G).
Show that 7 is a modular element of L¢.

(9) [2+] Generalize the previous exercise as follows. Let G be a doubly-connected
graph with lattice of contractions Lg. Let m € Lg. Show that the following two
conditions are equivalent.

(a) 7 is a modular element of Lg.
(b) 7 satisfies the following two properties:

(i) At most one block B of 7 contains more than one vertex of G.

(ii) Let H be the subgraph induced by the block B of (i). Let K be any
connected component of the subgraph induced by G — B, and let H;
be the graph induced by the set of vertices in H that are connected
to some vertex in K. Then H; is a clique (complete subgraph) of G.

(10) [24] Let L be a geometric lattice of rank n, and fix € L. Show that

Xo(t) = Y py)xe, (@),
yeL
zAy=0
where L, is the image of the interval [0, x] under the map z — z V y.
(11) [2+] Let J(M) be the set of independent sets of a matroid M. Find another
matroid N and a labeling of its points for which J(M) = BC,(N), the reduced
broken circuit complex of N.



(12)

(13)
(14)
(15)
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(a) [2+] If A and T" are simplicial complexes on disjoint sets A and B, respec-
tively, then define the join A % I' to be the simplicial complex on the set
AU B with faces F UG, where F € A and G € T. (E.g., if T" consists of
a single point then A *x I' is the cone over A. If ' consists of two disjoint
points, then A * T is the suspension of A.) We say that A and T" are join-
factors of AxT". Now let M be a matroid and S C M a modular flat, i.e., S
is a modular element of Lj;. Order the points of M such that if p € S and
q € S, then p < q. Show that BC(S) is a join-factor of BC(M). Deduce
that xaz(¢) is divisible by xs(t).

(b) [24] Conversely, let M be a matroid and S C M. Label the points of M so
that if p € S and ¢ ¢ S, then p < g. Suppose that BC(S) is a join-factor of
BC(M). Show that S is modular.

[2] Do Exercise 7, this time using Theorem 4.12 (the Broken Circuit Theorem).

[1] Show that all geometric lattices of rank two are supersolvable.

[2] Give an example of two nonisomorphic supersolvable geometric lattices of

rank 3 with the same characteristic polynomials.

[2] Prove Proposition 4.11: if G is a graph with blocks Gy,...,Gy, then Lg =

Lg, X+ x Lg,.

[2+] Give an example of a nonsupersolvable geometric lattice of rank three whose

characteristic polynomial has only integer zeros.

[2] Let Ly and Lo be geometric lattices. Show that L; and Lo are supersolvable

if and only if L1 x Lo is supersolvable.

[3-] Let L be a supersolvable geometric lattice. Show that every interval of L is

also supersolvable.

[2] (a) Find the number of maximal chains of the partition lattice IT,,.

(b) Find the number of modular maximal chains of II,,.

Let M be a matroid with a linear ordering of its points. The internal activity of

a basis B is the number of points p € B such that p < ¢ for all points ¢ # p not

in the closure B — p of B —p. The external activity of B is the number of points

p' € M — B such that p’ < ¢’ for all ¢/ # p’ contained in the unique circuit that

is a subset of B U {p’}. Define the Crapo beta invariant of M by

B(M) = (=1)" D=y (1),
where ’ denotes differentiation.

(a) [14] Show that 1—x /(1) = ¢(BC,), the Euler characteristic of the reduced
broken circuit complex of M.

(b) [3-] Show that 3(M) is equal to the number of bases of M with internal
activity 0 and external activity 0.

(c) [2] Let A be a real central arrangement with associated matroid M 4. Sup-
pose that A = cA’ for some arrangement A’, where cA’ denotes the cone
over A’. Show that S(M4) = b(A’).

(d) [24] With A as in (c), let H' be a (proper) translate of some hyperplane
H € A. Show that 3(Ma) = b(AU{H'}).






