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Exercises 4 -

(1) [2-] Let M be a matroid on a linearly ordered set. Show that BC(M) = BC(M),
where M is defined by equation (23).

(2) [2+] Let M be a matroid of rank at least one. Show that the coefficients of the
polynomial x(¢)/(t — 1) alternate in sign.

(3) (a) [2+] Let L be finite lattice for which every element has a unique comple-

ment. Show that L is isomorphic to a boolean algebra B,,.

(b) [3] A lattice L is distributive if

xV(yAz) = (xVy A(xVz)
zA(yVz) = (xAy)V(zAz)

for all 2,y, z € L. Let L be an infinite lattice with 0 and 1. If every element
of L has a unique complement, then is L a distributive lattice?
(4) [3-] Let = be an element of a geometric lattice L. Show that the following four
conditions are equivalent.
(i) « is a modular element of L.
(i) If x Ay = 0, then

rk(x) + rk(y) = rk(z V y).

(iii) If  and y are complements, then rk(z) + rk(y) = n.
(iv) All complements of x are incomparable.

(5) [2+] Let x,y be modular elements of a geometric lattice L. Show that x A y is
also modular.

(6) [2] Let L be a geometric lattice. Prove or disprove: if « is modular in L and y
is modular in the interval [z, 1], then y is modular in L.

(7) [2-] Let L and L' be finite lattices. Show that if both L and L’ are geometric
(respectively, atomic, semimodular, modular) lattices, then so is L x L.

(8) [2] Let G be a (loopless) connected graph and v € V(G). Let A =V (G)—v and
m = {A,v} € Lg. Suppose that whenever av,bv € E(G) we have ab € E(G).
Show that 7 is a modular element of L¢.

(9) [2+] Generalize the previous exercise as follows. Let G be a doubly-connected
graph with lattice of contractions Lg. Let m € Lg. Show that the following two
conditions are equivalent.

(a) 7 is a modular element of Lg.
(b) 7 satisfies the following two properties:

(i) At most one block B of 7 contains more than one vertex of G.

(ii) Let H be the subgraph induced by the block B of (i). Let K be any
connected component of the subgraph induced by G — B, and let H;
be the graph induced by the set of vertices in H that are connected
to some vertex in K. Then H; is a clique (complete subgraph) of G.

(10) [24] Let L be a geometric lattice of rank n, and fix € L. Show that

Xo(t) = Y py)xe, (@),
yeL
zAy=0
where L, is the image of the interval [0, x] under the map z — z V y.
(11) [2+] Let J(M) be the set of independent sets of a matroid M. Find another
matroid N and a labeling of its points for which J(M) = BC,(N), the reduced
broken circuit complex of N.
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(a) [2+] If A and T" are simplicial complexes on disjoint sets A and B, respec-
tively, then define the join A % I' to be the simplicial complex on the set
AU B with faces F UG, where F € A and G € T. (E.g., if T" consists of
a single point then A *x I' is the cone over A. If ' consists of two disjoint
points, then A x I" is the suspension of A.) We say that A and I' are join-
factors of AxT". Now let M be a matroid and S C M a modular flat, i.e., S
is a modular element of Lj;. Order the points of M such that if p € S and
q € S, then p < q. Show that BC(S) is a join-factor of BC(M). Deduce
that xaz(¢) is divisible by xs(t).

(b) [24] Conversely, let M be a matroid and S C M. Label the points of M so
that if p € S and ¢ € S, then p < g. Suppose that BC(S) is a join-factor of
BC(M). Show that S is modular.

[2] Do Exercise 7, this time using Theorem 4.12 (the Broken Circuit Theorem).

[1] Show that all geometric lattices of rank two are supersolvable.

[2] Give an example of two nonisomorphic supersolvable geometric lattices of

rank 3 with the same characteristic polynomials.

[2] Prove Proposition 4.11: if G is a graph with blocks Gy, ...,Gy, then Lg =

Lg, X+ x Lg,.

[2+] Give an example of a nonsupersolvable geometric lattice of rank three whose

characteristic polynomial has only integer zeros.

[2] Let Ly and Lo be geometric lattices. Show that L; and Lo are supersolvable

if and only if L1 x Lo is supersolvable.

[3-] Let L be a supersolvable geometric lattice. Show that every interval of L is

also supersolvable.

[2] (a) Find the number of maximal chains of the partition lattice IT,,.

(b) Find the number of modular maximal chains of II,,.

Let M be a matroid with a linear ordering of its points. The internal activity of

a basis B is the number of points p € B such that p < ¢ for all points ¢ # p not

in the closure B — p of B —p. The external activity of B is the number of points

p' € M — B such that p’ < ¢’ for all ¢’ # p’ contained in the unique circuit that

is a subset of B U {p’}. Define the Crapo beta invariant of M by

B(M) = (=1)" D=y (1),
where ’ denotes differentiation.

(a) [14] Show that 1—x /(1) = ¢(BC,), the Euler characteristic of the reduced
broken circuit complex of M.

(b) [3-] Show that 3(M) is equal to the number of bases of M with internal
activity 0 and external activity 0.

(c) [2] Let A be a real central arrangement with associated matroid M 4. Sup-
pose that A = cA’ for some arrangement A’, where cA’ denotes the cone
over A’. Show that S(M4) = b(A’).

(d) [24] With A as in (c), let H' be a (proper) translate of some hyperplane
H € A. Show that 3(Ma) = b(AU{H'}).
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Exercises 5
(1) [2] Verify equation (37), viz.,

Xa)(t) =t —-1)(t=3)---(t—(2n—3)-(t—n+1).

(2) [2] Draw a picture of the projectivization of the Coxeter arrangement A(Bs3),
similar to Figure 1 of Lecture 1.
(3) (a) [2] An embroidered permutation of [n] consists of a permutation w of [n]
together with a collection € of ordered pairs (¢, j) such that:
o 1 <i<j<nforall (i,j) € €.
o If (4,5) and (h,k) are distinct elements of &, then it is false that
i1 <h<k<j.
o If (4,5) € € then w(i) < w(y).
For instance, the three embroidered permutations (w, &) of [2] are given
by (12,0), (12,{(1,2)}), and (21,0). Give a bijective proof that the num-
ber r(8,) of regions of the Shi arrangement 8,, is equal to the number of
embroidered permutations of [n].

(b) [24] A parking function of length n is a sequence (a1,...,a,) € P* whose
increasing rearrangement by < by < --- < b, satisfies b; < ¢. For instance,
the parking functions of length three are 11, 12, 21. Give a bijective proof
that the number of parking functions of length n is equal to the number of
embroidered permutations of [n].

(¢) [3-] Give a combinatorial proof that the number of parking functions of
length n is equal to (n + 1)"71.

(4) [24] Show that if §,, denotes the Shi arrangement, then the cone ¢§,, is not
supersolvable for n > 3.
(5) [2] Show that if f: P — R and h : N — R are related by equation (40) (with

h(0) = 1), then equation (39) holds.

(6) (a) [2] Compute the characteristic polynomial of the arrangement B! in R™
with defining polynomial

Qz) = (1 — 2 — 1) H (@i — ).

1<i<j<n

In other words, B/, consists of the braid arrangement together with the
hyperplane 1 — x,, = 1.
(b) [5-] Is ¢B!, (the cone over B! ) supersolvable?
(7) [24] Let 1 <k < n. Find the characteristic polynomial of the arrangement 8, &
in R™ defined by

z;—x;=0 for 1<i<j<n
z;—xj=1 for 1<i<j<Ek.

(8) [2+] Let 1 < k < n. Find the characteristic polynomial of the arrangement C,, j,
in R™ defined by

z; =0 for 1<i<n
r;xx; =0 for 1<i<j<n .
;i +z;=1 for 1<i<j<k.

In particular, show that r(C, 1) = 2""%!(2]5).
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[24] Let A,, be the arrangement in R™ with hyperplanes x; = 0 for all 1,
x; = x; for all i < j, and x; = 2z; for all ¢ # j. Show that

xa,(t)=t—-1)t—n—2)p_1,

where (z),, = z(x — 1)---(x — m + 1). In particular, r(A,) = 2(2n +
1)!/(n+2)!. Can this be seen combinatorially? (This last question has not
been worked on.)

[2+] Now let A,, be the arrangement in R™ with hyperplanes z; = z; for
all ¢ < j and x; = 2z, for all i # j. Show that

xa, ()= (t—=1)(t—n—2),_3(t* = (3n — 1)t + 3n(n — 1)).

In particular, r(A,) = 6n%(2n — 1)!/(n +2)!. Again, a combinatorial proof
can be asked for.

[5-] Modify. For instance, what about the arrangement with hyperplanes
xz; =0 for all 7, x; = x; for all 7 < j, and z; = 2z, for alli < 57 Or z; =0
for all 4, z; = z; for all ¢ < j, z; = 2z; for all ¢ # j, and x; = 3x; for all
i# g7

[2+] For n > 1 let A,, be an arrangement in R™ such that every H € A,
is parallel to a hyperplane of the form x; = cx;, where ¢ € R. Just as in
the definition of an exponential sequence of arrangements, define for every
subset S of [n] the arrangement

A% ={H € A, : H is parallel to some z; = cx;, where i,5 € S}.

Suppose that for every such S we have L s = Ly, , where k = #5. Let

n

X
F(z) = Z(*l)"r(ﬂn)m
n>0
— _ Tk(\An) ﬁ
G(z) = T;)( 1) b(ﬂn)n!-
Show that
n G(z>(t+1)/2
ZXAn(t)m = e

n>0

[2] Simplify equation (48) when each A, is a central arrangement. Make
sure that your simplification is valid for the braid arrangement and the
coordinate hyperplane arrangement.

(11) [24] Let Rp(C,,) denote the set of regions of the Catalan arrangement €,, con-
tained in the regions 1 > zo > -+ > x, of B,. Let R be the unique region
in Ro(C,,) whose closure contains the origin. For R € R((C,,), let X be the
set of hyperplanes H € €, such that R and R lie on different sides of H. Let
W, ={Xr : R € Ro(C,)}, ordered by inclusion.
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Let P, be the poset of intervals [i,j], 1 < i < j < n, ordered by reverse
inclusion.

[1,2] [2,3] [3,4]
[1,2] [2,3]

[1.3]

[1.4]
P ?

Show that W,, & J(P,), the lattice of order ideals of P,. (An order ideal of a
poset P is a subset I C P such that if z € I and y < z, then y € I. Define J(P)
to be the set of order ideals of P, ordered by inclusion. See [18, Thm. 3.4.1].)
(12) [2] Use the finite field method to prove that

xe, ) =tt—-n—-1)t—-n—-2)t—n—-3)---(t—2n+1),

where C,, denotes the Catalan arrangement.
(13) [24+] Let k € P. Find the number of regions and characteristic polynomial of the
extended Catalan arrangement

Cn(k): x;—x; =0,£1,£2,..., £k, for 1 <i<j<n.
Generalize Exercise 11 to the arrangements C,, (k).
(14) [3-] Let 82 denote the arrangement
ritzx; = 0,1, 1<i<j<n
2¢; = 0,1, 1<i<n,

called the Shi arrangement of type B. Find the characteristic polynomial and
number of regions of 8. Is there a “nice” bijective proof of the formula for the
number of regions?
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(15) [5-] Let 1 < k < n. Find the number of regions (or more generally the charac-
teristic polynomial) of the arrangement (in R™)

(1, 1<i<k
TiTTI T 2, k+1<i<n,

for all ¢ # j. Thus we are counting interval orders on [n] where the elements
1,2,...,k correspond to intervals of length one, while k + 1,...,n correspond
to intervals of length two. Is it possible to count such interval orders up to
isomorphism (i.e., the unlabelled case)? What if the length 2 is replaced instead
by a generic length a?

(16) [24] A double semiorder on [n] consists of two binary relations < and < on [n]
that arise from a set x1,...,x, of real numbers as follows:

i<j if LL‘Z'<IL'J'71
1<y i x;<z;—2.

If we associate the interval I; = [x; — 2,2;] with the point x;, then we are

specifying whether I; lies to the left of the midpoint of I}, entirely to the left of

I;, or neither. It should be clear what is meant for two double semiorders to be

1somorphic.

(a) [2] Draw interval diagrams of the 12 nonisomorphic double semiorders on
{1,2,3}.

(b) [2] Let p2(n) denote the number of double semiorders on [r]. Find an
arrangement 3P satisfying r(Jg)) = pa2(n).

(¢) [24] Show that the number of nonisomorphic double semiorders on [n] is

given by 2n1+1 (3:)

(d) [2-] Let F(x) =X ,50 57 () =™ Show that
" ﬂﬁ
;Oﬂz(”)H:F(l*G )

(e) [2] Generalize to “k-semiorders,” where ordinary semiorders (or unit interval
orders) correspond to k = 1 and double semiorders to k = 2.

(17) [14] Show that intervals of lengths 1,1.0001,1.001, 1.01, 1.1 cannot form an in-
terval order isomorphic to 4 + 1, but that such an interval order can be formed
if the lengths are 1, 10,100, 1000, 10000.

(18) [5-] What more can be said about interval orders with generic interval lengths?
For instance, consider the two cases: (a) interval lengths very near each other
(e.g., 1,1.001, 1.01, 1.1), and (b) interval lengths superincreasing (e.g., 1, 10, 100,
1000). Are there finitely many obstructions to being such an interval order? Can
the number of unlabelled interval orders of each type be determined? (Perhaps
the numbers are the same, but this seems unlikely.)

(19) (a) [3] Let L,, denote the Linial arrangement, say in R™. Show that

(b) [1+] Deduce from (a) that
xe, () _ (=D"xe, (=t +n)

t —t+n
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1 3 2 4 2 4 1 3
r—1—o—0 o r—1—o—0
1 4 2 3 3 4 1 2
r——o—0 1 —o—0
2 3 1 4
4
2 3
1 3
4

Figure 10. The seven alternating trees on the vertex set [4]

(20) (a) [3-] An alternating tree on the vertex set [n] is a tree on [n] such that
every vertex is either less than all its neighbors or greater than all its neigh-
bors. Figure 10 shows the seven alternating trees on [4]. Deduce from
Exercise 19(a) that 7(L,,) is equal to the number of alternating trees on
[n+1].

(b) [5] Find a bijective proof of (a), i.e., give an explicit bijection between the
regions of L,, and the alternating trees on [n + 1].
(21) [3-] Let
Xo, (1) = ant™ — an 1 t" 4+ (=1)"Lagt.
Deduce from Exercise 19(a) that a; is the number of alternating trees on the
vertex set 0, 1, ..., n such that vertex 0 has degree (number of adjacent vertices)
i.

(22) (a) [24] Let P(t) € CJt] have the property that every (complex) zero of P(t)
has real part a. Let z € C satisfy |z|] = 1. Show that every zero of the
polynomial P(t — 1) 4+ zP(t) has real part a + 1.

(b) [24] Deduce from (a) and Exercise 19(a) that every zero of the polynomial
Xz, (t)/t hasreal part n/2. This result is known as the “Riemann hypothesis
for the Linial arrangement.”

(23) (a) [2-] Compute lim, o b(8,)/r(8y), where §,, denotes the Shi arrangement.

(b) [3] Do the same for the Linial arrangement £L,,.

(24) [2+] Let L,, denote the Linial arrangement in R™. Fix an integer  # 0, £1, and
let M,, () be the arrangement in R™ defined by x; = rz;, 1 <1 < j < n, together
with the coordinate hyperplanes z; = 0. Find a relationship between x,, (t) and
XM, (r) (t) without explicitly computing these characteristic polynomials.

(25) (a) [3-] A threshold graph on [n] may be defined recursively as follows: (i) the
empty graph ) is a threshold graph, (ii) if G is a threshold graph, then so is
the disjoint union of G and a single vertex, and (iii) if G is a threshold graph,
then so is the graph obtained by adding a new vertex v and connecting it
to every vertex of G. Let 7,, denote the threshold arrangement. Show that
(T, ) is the number of threshold graphs on [n].
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(b) [2+] Deduce from (a) that

n>0
(¢) [14] Deduce from Exercise 10 that
" _

> xo, ()5 = (L+)(2e” — 1)V

n>0 ’
[5-] Let

XTn (t) =" — an,ltn_l + -+ (71)"0,().
For instance,
g,(t) = t3-3t2+3t—1
g, (t) = tP—6t3 1512 — 1Tt + 7
g, (1) = 5 —10t* 4+ 45t3 — 105t% + 120t — 51.
By Exercise 25(a), ag + a1 + -+ + ap—1 + 1 is the number of threshold graphs
on the vertex set [n]. Give a combinatorial interpretation of the numbers a; as

the number of threshold graphs with a certain property.
(a) [14] Find the number of regions of the “Linial threshold arrangement”

= = =

(b) [5-] Find the number of regions, or even the characteristic polynomial, of
the “Shi threshold arrangement”
v +2;=01, 1<i<j<n.

[3-] Let A,, denote the “generic threshold arrangement” (in R") z; + x; = a;j,
1 <14 < j < n, where the a;;’s are generic. Let

n— x"
T(x) = Zn 2?’

n>1

the generating function for labelled trees on n vertices. Let

n— z"
R(‘T):Zn 157

n>1
the generating function for rooted labelled trees on n vertices. Show that

n

1/4
Sy err e (LEA)
= "l 1— R(x)

172 3 I4

x x° 28
= 1+x+2§+8§+54I+533§+6934a+~~
[2+4] Fix k,n > 1 and r > 0. Let f(k,n,r) be the number of k x n (0, 1)-matrices
A over the rationals such that all rows of A are distinct, every row has at least
one 1, and rank(A) = r. Let g,(q) be the number of n-tuples (a1,...,a,) € Fy
such that no nonempty subset of the entries sums to 0 (in F,). Show that for

p > 0, where ¢ = p?, we have

Y
n(q) =Z< kl!) fkyn,m)g" "

k,r
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(The case k = 0 is included, corresponding to the empty matrix, which has rank
0.)



