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LECTURE 1 
Basic definitions, the intersection poset and the 

characteristic polynomial 

1.1. Basic definitions 

The following notation is used throughout for certain sets of numbers: 

N nonnegative integers 
P positive integers 
Z integers 
Q rational numbers 
R real numbers 

R+ positive real numbers 
C complex numbers 

[m] the set {1, 2, . . . ,m} when m ≤ N 

We also write [tk]ψ(t) for the coefficient of tk in the polynomial or power series ψ(t). 
For instance, [t2](1 + t)4 = 6. 

A finite hyperplane arrangement A is a finite set of affine hyperplanes in some 
vector space V ∪= Kn, where K is a field. We will not consider infinite hyperplane 
arrangements or arrangements of general subspaces or other objects (though they 
have many interesting properties), so we will simply use the term arrangement for 
a finite hyperplane arrangement. Most often we will take K = R, but as we will see 
even if we’re only interested in this case it is useful to consider other fields as well. 
To make sure that the definition of a hyperplane arrangement is clear, we define a 
linear hyperplane to be an (n− 1)-dimensional subspace H of V , i.e., 

H = {v ≤ V : κ v = 0},·
where κ is a fixed nonzero vector in V and κ v is the usual dot product: ·

(κ1, . . . , κn) · (v1, . . . , vn) = 
� 

κivi. 

An affine hyperplane is a translate J of a linear hyperplane, i.e., 

J = {v ≤ V : κ v = a},·
where κ is a fixed nonzero vector in V and a ≤ K. 

If the equations of the hyperplanes of A are given by L1(x) = a1, . . . , Lm(x) = 
am, where x = (x1, . . . , xn) and each Li(x) is a homogeneous linear form, then we 
call the polynomial 

QA(x) = (L1(x) − a1) · · · (Lm(x) − am) 

the defining polynomial of A. It is often convenient to specify an arrangement 
by its defining polynomial. For instance, the arrangement A consisting of the n 
coordinate hyperplanes has QA(x) = x1x2 · · ·xn. 

Let A be an arrangement in the vector space V . The dimension dim(A) of 
A is defined to be dim(V ) (= n), while the rank rank(A) of A is the dimension 
of the space spanned by the normals to the hyperplanes in A. We say that A is 
essential if rank(A) = dim(A). Suppose that rank(A) = r, and take V = Kn . Let 
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Y be a complementary space in Kn to the subspace X spanned by the normals to 
hyperplanes in A. Define 

W = {v ≤ V : v · y = 0 ≡y ≤ Y }. 
If char(K) = 0 then we can simply take W = X . By elementary linear algebra we 
have 

(1) codimW (H ⊕ W ) = 1 

for all H ≤ A. In other words, H ⊕ W is a hyperplane of W , so the set AW := 
{H⊕W : H ≤ A} is an essential arrangement in W . Moreover, the arrangements A 
and AW are “essentially the same,” meaning in particular that they have the same 
intersection poset (as defined in Definition 1.1). Let us call AW the essentialization 
of A, denoted ess(A). When K = R and we take W = X , then the arrangement A 
is obtained from AW by “stretching” the hyperplane H ⊕ W ≤ AW orthogonally to 
W . Thus if W� denotes the orthogonal complement to W in V , then H � ≤ AW if 
and only if H � � W� ≤ A. Note that in characteristic p this type of reasoning fails 
since the orthogonal complement of a subspace W can intersect W in a subspace 
of dimension greater than 0. 

Example 1.1. Let A consist of the lines x = a1, . . . , x = ak in K2 (with coordinates 
x and y). Then we can take W to be the x-axis, and ess(A) consists of the points 
x = a1, . . . , x = ak in K. 

Now let K = R. A region of an arrangement A is a connected component of 
the complement X of the hyperplanes: 

X = Rn − 
� 

H. 
H⊆A 

Let R(A) denote the set of regions of A, and let 

r(A) = #R(A), 

the number of regions. For instance, the arrangement A shown below has r(A) = 14. 

It is a simple exercise to show that every region R ≤ R(A) is open and convex 
(continuing to assume K = R), and hence homeomorphic to the interior of an n-
dimensional ball Bn (Exercise 1). Note that if W is the subspace of V spanned by 
the normals to the hyperplanes in A, then R ≤ R(A) if and only if R⊕ W ≤ R(AW ). 
We say that a region R ≤ R(A) is relatively bounded if R ⊕ W is bounded. If A 
is essential, then relatively bounded is the same as bounded. We write b(A) for 
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the number of relatively bounded regions of A. For instance, in Example 1.1 take 
K = R and a1 < a2 < < ak . Then the relatively bounded regions are the · · · 
regions ai < x < ai+1, 1 → i → k − 1. In ess(A) they become the (bounded) open 
intervals (ai, ai+1). There are also two regions of A that are not relatively bounded, 
viz., x < a1 and x > ak. 

A (closed) half-space is a set {x ≤ Rn : x κ ⊂ c} for some κ ≤ Rn , c ≤ R. If·
H is a hyperplane in Rn, then the complement Rn −H has two (open) components 

¯whose closures are half-spaces. It follows that the closure R of a region R of A is 
a finite intersection of half-spaces, i.e., a (convex) polyhedron (of dimension n). A 

¯bounded polyhedron is called a (convex) polytope. Thus if R (or R) is bounded, 
¯then R is a polytope (of dimension n). 

An arrangement A is in general position if 

{H1, . . . , Hp} ∗ A, p → n ⊆ dim(H1 ⊕ · · · ⊕Hp) = n− p 

{H1, . . . , Hp} ∗ A, p > n = .⊆ H1 ⊕ · · · ⊕Hp �
For instance, if n = 2 then a set of lines is in general position if no two are parallel 
and no three meet at a point. 

Let us consider some interesting examples of arrangements that will anticipate 
some later material. 

Example 1.2. Let Am consist of m lines in general position in R2 . We can compute 
r(Am) using the sweep hyperplane method. Add a L line to Ak (with AK ∅ {L} in 
general position). When we travel along L from one end (at infinity) to the other, 
every time we intersect a line in Ak we create a new region, and we create one new 
region at the end. Before we add any lines we have one region (all of R2). Hence 

r(Am) = #intersections + #lines + 1 

�
m
� 

= + m+ 1. 
2 

Example 1.3. The braid arrangement Bn in Kn consists of the hyperplanes 

Bn : xi − xj = 0, 1 → i < j → n. 

Thus Bn has 
⎜
n
� 

hyperplanes. To count the number of regions when K = R, note 2
that specifying which side of the hyperplane xi − xj = 0 a point (a1, . . . , an) lies 
on is equivalent to specifying whether ai < aj or ai > aj . Hence the number of 
regions is the number of ways that we can specify whether ai < aj or ai > aj for 
1 → i < j → n. Such a specification is given by imposing a linear order on the 
ai’s. In other words, for each permutation w ≤ Sn (the symmetric group of all 
permutations of 1, 2, . . . , n), there corresponds a region Rw of Bn given by 

Rw = {(a1, . . . , an) ≤ Rn : aw(1) > aw(2) > · · · > aw(n)}. 
Hence r(Bn ) = n!. Rarely is it so easy to compute the number of regions! 

Note that the braid arrangement Bn is not essential; indeed, rank(Bn) = n−1. 
When char(K) = 2 the space W ∗ Kn of equation (1) can be taken to be ⇔ 

W = {(a1, . . . , an) ≤ Kn : a1 + + an = 0}.· · ·
The braid arrangement has a number of “deformations” of considerable interest. 

We will just define some of them now and discuss them further later. All these 
arrangements lie in Kn, and in all of them we take 1 → i < j → n. The reader who 
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likes a challenge can try to compute their number of regions when K = R. (Some 
are much easier than others.) 

•	 generic braid arrangement : xi − xj = aij , where the aij ’s are “generic” 
(e.g., linearly independent over the prime field, so K has to be “sufficiently 
large”). The precise definition of “generic” will be given later. (The prime 
field of K is its smallest subfield, isomorphic to either Q or Z/pZ for some 
prime p.) 

•	 semigeneric braid arrangement : xi −xj = ai, where the ai’s are “generic.” 
•	 Shi arrangement : xi − xj = 0, 1 (so n(n− 1) hyperplanes in all). 
•	 Linial arrangement : xi − xj = 1. 
•	 Catalan arrangement : xi − xj = −1, 0, 1. 
•	 semiorder arrangement : xi − xj = −1, 1. 
•	 threshold arrangement : xi + xj = 0 (not really a deformation of the braid 

arrangement, but closely related). 

An arrangement A is central if 
�

H⊆A H = �. Equivalently, A is a translate ⇔
of a linear arrangement (an arrangement of linear hyperplanes, i.e., hyperplanes 
passing through the origin). Many other writers call an arrangement central, rather 
than linear, if 0 ≤ 

�
H⊆A H . If A is central with X = 

�
H⊆A H , then rank(A) = 

codim(X). If A is central, then note also that b(A) = 0 [why?]. 
There are two useful arrangements closely related to a given arrangement A. 

If A is a linear arrangement in Kn, then projectivize A by choosing some H ≤ A 
to be the hyperplane at infinity in projective space P n−1 . Thus if we regard K 

Pn−1 = {(x1, . . . , xn) : xi ≤ K, not all xi = 0}/∪,K 

where u ∪ v if u = κv for some 0 = κ ≤ K, then ⇔ 
= Pn−2H = ({(x1, . . . , xn−1, 0) : xi ≤ K, not all xi = 0}/∪) ∪ K . 

The remaining hyperplanes in A then correspond to “finite” (i.e., not at infinity) 
projective hyperplanes in P n−1 . This gives an arrangement proj(A) of hyperplanes K 
in

A r A 1proj( ). Hence (proj( )) = 
Pn−1 . When K = R, the two regions R and −R of A become identified in K 

r(A). When n = 3, we can draw P 2 as a disk with 2	 R 
antipodal boundary points identified. The circumference of the disk represents the 
hyperplane at infinity. This provides a good way to visualize three-dimensional real 
linear arrangements. For instance, if A consists of the three coordinate hyperplanes 
x1 = 0, x2 = 0, and x3 = 0, then a projective drawing is given by 

2 
1 

3 

The line labelled i is the projectivization of the hyperplane xi = 0. The hyperplane 
at infinity is x3 = 0. There are four regions, so r(A) = 8. To draw the incidences 
among all eight regions of A, simply “reflect” the interior of the disk to the exterior: 
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23 

14 

13 

2412 

34 

Figure 1. A projectivization of the braid arrangement B4 

2 
1 

3 

1 

2 

Regarding this diagram as a planar graph, the dual graph is the 3-cube (i.e., the 
vertices and edges of a three-dimensional cube) [why?]. 

For a more complicated example of projectivization, Figure 1 shows proj(B4) 
(where we regard B4 as a three-dimensional arrangement contained in the hyper­
plane x1 + x2 + x3 + x4 = 0 of R4), with the hyperplane xi = xj labelled ij, and 
with x1 = x4 as the hyperplane at infinity. 
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We now define an operation which is “inverse” to projectivization. Let A be 
an (affine) arrangement in Kn, given by the equations 

L1(x) = a1, . . . , Lm(x) = am. 

Introduce a new coordinate y, and define a central arrangement cA (the cone over 
A) in Kn × K = Kn+1 by the equations 

L1(x) = a1y, . . . , Lm(x) = amy, y = 0. 

For instance, let A be the arrangement in R1 given by x = −1, x = 2, and x = 3. 
The following figure should explain why cA is called a cone. 

−1 
3 

2 

It is easy to see that when K = R, we have r(cA) = 2r(A). In general, cA has 
the “same combinatorics as A, times 2.” See Exercise 1. 

1.2. The intersection poset 

Recall that a poset (short for partially ordered set) is a set P and a relation →
satisfying the following axioms (for all x, y, z ≤ P ): 

(P1) (reflexivity) x x→
(P2) (antisymmetry) If x → y and y → x, then x = y. 
(P3) (transitivity) If x → y and y → z, then x z.→ 

Obvious notation such as x < y for x → y and x = y, and y ⊂ x for x → y will be ⇔
used throughout. If x → y in P , then the (closed) interval [x, y] is defined by 

[x, y] = {z ≤ P : x → z → y}. 
Note that the empty set � is not a closed interval. For basic information on posets 
not covered here, see [18]. 

Definition 1.1. Let A be an arrangement in V , and let L(A) be the set of all 
nonempty intersections of hyperplanes in A, including V itself as the intersection 
over the empty set. Define x → y in L(A) if x ∀ y (as subsets of V ). In other words, 
L(A) is partially ordered by reverse inclusion. We call L(A) the intersection poset 
of A. 

Note. The primary reason for ordering intersections by reverse inclusion rather 
than ordinary inclusion is Proposition 3.8. We don’t want to alter the well-established 
definition of a geometric lattice or to refer constantly to “dual geometric lattices.” 

The element V ≤ L(A) satisfies x ⊂ V for all x ≤ L(A). In general, if P is a 
poset then we denote by ˆ 0 for all 0 an element (necessarily unique) such that x ⊂ ˆ



8 R. STANLEY, HYPERPLANE ARRANGEMENTS 

Figure 2. Examples of intersection posets 

x ≤ P . We say that y covers x in a poset P , denoted x� y, if x < y and no z ≤ P 
satisfies x < z < y. Every finite poset is determined by its cover relations. The 
(Hasse) diagram of a finite poset is obtained by drawing the elements of P as dots, 
with x drawn lower than y if x < y, and with an edge between x and y if x � y. 
Figure 2 illustrates four arrangements A in R2, with (the diagram of) L(A) drawn 
below A. 

A chain of length k in a poset P is a set x0 < x1 < < xk of elements of · · · 
P . The chain is saturated if x0 � x1 � � xk . We say that P is graded of rank · · ·
n if every maximal chain of P has length n. In this case P has a rank function 
rk : P ∃ N defined by: 

• rk(x) = 0 if x is a minimal element of P . 
• rk(y) = rk(x) + 1 if x� y in P . 

If x < y in a graded poset P then we write rk(x, y) = rk(y) − rk(x), the length 
of the interval [x, y]. Note that we use the notation rank(A) for the rank of an 
arrangement A but rk for the rank function of a graded poset. 

= KnProposition 1.1. Let A be an arrangement in a vector space V ∪ . Then the 
intersection poset L(A) is graded of rank equal to rank(A). The rank function of 
L(A) is given by 

rk(x) = codim(x) = n− dim(x), 

where dim(x) is the dimension of x as an affine subspace of V . 

Proof. Since L(A) has a unique minimal element ˆ = V , it suffices to show that 0 
(a) if x�y in L(A) then dim(x)−dim(y) = 1, and (b) all maximal elements of L(A) 
have dimension n−rank(A). By linear algebra, if H is a hyperplane and x an affine 
subspace, then H ⊕x = x or dim(x) −dim(H ⊕x) = 1, so (a) follows. Now suppose 
that x has the largest codimension of any element of L(A), say codim(x) = d. Thus 
x is an intersection of d linearly independent hyperplanes (i.e., their normals are 
linearly independent) H1, . . . , Hd in A. Let y ≤ L(A) with e = codim(y) < d. Thus 
y is an intersection of e hyperplanes, so some Hi (1 → i d) is linearly independent →
from them. Then y ⊕ Hi = � and codim(y ⊕ Hi) > codim(y). Hence y is not a ⇔
maximal element of L(A), proving (b). � 
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1 
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−2 

−1 

1 

Figure 3. An intersection poset and Möbius function values 

1.3. The characteristic polynomial 

A poset P is locally finite if every interval [x, y] is finite. Let Int(P ) denote the 
set of all closed intervals of P . For a function f : Int(P ) ∃ Z, write f(x, y) for 
f([x, y]). We now come to a fundamental invariant of locally finite posets. 

Definition 1.2. Let P be a locally finite poset. Define a function µ = µP : 
Int(P ) ∃ Z, called the Möbius function of P , by the conditions: 

µ(x, x) = 1, for all x ≤ P 

(2) µ(x, y) = 
� 

µ(x, z), for all x < y in P.− 
x⊇z<y 

This second condition can also be written
� 
µ(x, z) = 0, for all x < y in P.


x⊇z⊇y 

0, then we write µ(x) = µ(ˆIf P has a ˆ 0, x). Figure 3 shows the intersection poset 
L of the arrangement A in K3 (for any field K) defined by QA(x) = xyz(x + y), 
together with the value µ(x) for all x ≤ L. 

A important application of the M¨ obius inversion for­obius function is the M¨
mula. The best way to understand this result (though it does have a simple direct 
proof) requires the machinery of incidence algebras. Let I(P ) = I(P,K) denote 
the vector space of all functions f : Int(P ) ∃ K. Write f(x, y) for f([x, y]). For 
f, g ≤ I(P ), define the product fg ≤ I(P ) by 

fg(x, y) = 
� 

f(x, z)g(z, y). 
x⊇z⊇y 

It is easy to see that this product makes I(P ) an associative Q-algebra, with mul­
tiplicative identity ζ given by 

� 
1, x = y

ζ(x, y) = 
0, x < y. 

Define the zeta function α ≤ I(P ) of P by α(x, y) = 1 for all x → y in P . Note that 
the Möbius function µ is an element of I(P ). The definition of µ (Definition 1.2) is 
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equivalent to the relation µα = ζ in I(P ). In any finite-dimensional algebra over a 
field, one-sided inverses are two-sided inverses, so µ = α−1 in I(P ). 

Theorem 1.1. Let P be a finite poset with Möbius function µ, and let f, g : P ∃ K. 
Then the following two conditions are equivalent: 

f(x) = 
� 

y∗x 

g(y), for all x ≤ P 

g(x) = 
� 

µ(x, y)f(y), for all x ≤ P. 
y∗x 

Proof. The set KP of all functions P ∃ K forms a vector space on which I(P ) 
acts (on the left) as an algebra of linear transformations by 

(�f)(x) = 
� 

�(x, y)f(y), 
y∗x 

where f ≤ KP and � ≤ I(P ). The Möbius inversion formula is then nothing but 
the statement 

αf = g √ f = µg. 

We now come to the main concept of this section. 

Definition 1.3. The characteristic polynomial ψA(t) of the arrangement A is de­
fined by 

(3)	 ψA(t) = 
� 

µ(x)tdim(x). 
x⊆L(A) 

For instance, if A is the arrangement of Figure 3, then 

ψA(t) = t3 − 4t2 + 5t− 2 = (t− 1)2(t− 2). 

Note that we have immediately from the definition of ψA(t), where A is in Kn , 
that 

ψA(t) = tn − (#A)tn−1 + .· · · 
Example 1.4. Consider the coordinate hyperplane arrangement A with defining 
polynomial QA(x) = xn. Every subset of the hyperplanes in A has ax1x2 · · ·
different nonempty intersection, so L(A) is isomorphic to the boolean algebra Bn of

all subsets of [n] = {1, 2, . . . , n}, ordered by inclusion.


Proposition 1.2. Let A be given by the above example. Then ψA(t) = (t− 1)n .


Proof. The computation of the M¨
obius function of a boolean algebra is a standard 
result in enumerative combinatorics with many proofs. We will give here a naive 
proof from first principles. Let y ≤ L(A), r(y) = k. We claim that 

(4) µ(y) = (−1)k .


The assertion is clearly true for rk(y) = 0, when y = ˆ 0. We need to
0. Now let y > ˆ

show that 

(5)	
�

(−1)rk(x) = 0. 
x⊇y 
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ion
The number of x such that x → y and rk(x) = i is 

⎜
k
�
, so (5) is equivalent to the
i 

well-known identity (easily proved by substituting q = −1 in the binomial expans

of (q + 1)k ) 
�

i
k 
=0(−1)i

⎜
k
� 

= 0 for k > 0. �
i 




