
LECTURE 2 
Properties of the intersection poset and graphical 

arrangements 

2.1. Properties of the intersection poset 

Let A be an arrangement in the vector space V . A subarrangement of A is a 
subset B ∗ A. Thus B is also an arrangement in V . If x ≤ L(A), define the 
subarrangement Ax ∗ A by 

(6) Ax = {H ≤ A : x ∗ H}. 

Also define an arrangement Ax in the affine subspace x ≤ L(A) by 

= = .Ax x ⊕H{ ⇔ � : H ≤ A − Ax}

Note that if x ≤ L(A), then 

= �x := {y ≤ L(A) : y →L(Ax) ∪ x}
(7) L(Ax = Vx := {y ≤ L(A) : y ⊂ x}) ∪

K 

x 

K 
A 

AK 

xA 

Choose H0 ≤ A. Let A� = A − {H0} and A�� = AH0 . We call (A, A� , A��) a 
triple of arrangements with distinguished hyperplane H0. 

13 
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A’ 
A 

H0 

A" 

The main goal of this section is to give a formula in terms of ψA(t) for r(A) 
and b(A) when K = R (Theorem 2.5). We first establish recurrences for these two 
quantities. 

Lemma 2.1. Let (A, A� , A��) be a triple of real arrangements with distinguished 
hyperplane H0. Then 

r(A) = r(A� ) + r(A�� ) 

� 
b(A�) + b(A��), if rank(A) = rank(A�)

b(A) = 
0, if rank(A) = rank(A�) + 1. 

Note. If rank(A) = rank(A�), then also rank(A) = 1 + rank(A��). The figure 
below illustrates the situation when rank(A) = rank(A�) + 1. 

H
0

Proof. Note that r(A) equals r(A�) plus the number of regions of A� cut into two 
regions by H0. Let R� be such a region of A� . Then R� ⊕ H0 ≤ R(A��). Conversely, 
if R�� ≤ R(A��) then points near R�� on either side of H0 belong to the same region 
R� ≤ R(A�), since any H ≤ R(A�) separating them would intersect R�� . Thus R� is 
cut in two by H0. We have established a bijection between regions of A� cut into 
two by H0 and regions of A��, establishing the first recurrence. 

The second recurrence is proved analogously; the details are omitted. � 
We now come to the fundamental recursive property of the characteristic poly­

nomial. 

, A��Lemma 2.2. (Deletion-Restriction) Let (A, A� ) be a triple of real arrange­
ments. Then 

ψA(t) = ψA� (t) − ψA�� (t). 



� 
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Figure 1. Two non-lattices 

For the proof of this lemma, we will need some tools. (A more elementary proof 
could be given, but the tools will be useful later.) 

Let P be a poset. An upper bound of x, y ≤ P is an element z ≤ P satisfying 
z ⊂ x and z ⊂ y. A least upper bound or join of x and y, denoted x ⇒ y, is an upper 
bound z such that z → z for all upper bounds z� . Clearly if x ⇒ y exists, then it 
is unique. Similarly define a lower bound of x and y, and a greatest lower bound 
or meet, denoted x ∈ y. A lattice is a poset L for which any two elements have a 
meet and join. A meet-semilattice is a poset P for which any two elements have 
a meet. Dually, a join-semilattice is a poset P for which any two elements have a 
join. Figure 1 shows two non-lattices, with a pair of elements circled which don’t 
have a join. 

Lemma 2.3. A finite meet-semilattice L with a unique maximal element 1̂ is a 
lattice. Dually, a finite join-semilattice L with a unique minimal element 0̂ is a 
lattice. 

Proof. Let L be a finite meet-semilattice. If x, y ≤ L then the set of upper bounds 
of x, y is nonempty since 1̂ is an upper bound. Hence 

x ⇒ y = 
� 

z. 
z∗x 
z∗y 

The statement for join-semilattices is by “duality,” i.e., interchanging → with ⊂, 
and ∈ with . �⇒

The reader should check that Lemma 2.3 need not hold for infinite semilattices. 

Proposition 2.3. Let A be an arrangement. Then L(A) is a meet-semilattice. In 
particular, every interval [x, y] of L(A) is a lattice. Moreover, L(A) is a lattice if 
and only if A is central. 

Proof. If 
�

H⊆A H = �, then adjoin � to L(A) as the unique maximal element, 
obtaining the augmented intersection poset L�(A). In L�(A) it is clear that x ⇒ y = 
x⊕y. Hence L�(A) is a join-semilattice. Since it has a 0̂, it is a lattice by Lemma 2.3. 
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Since L(A) = L�(A) or L(A) = L�(A) − {1̂}, it follows that L(A) is always a meet­
semilattice, and is a lattice if A is central. If A isn’t central, then 

�
x⊆L(A) x does 

not exist, so L(A) is not a lattice. � 
We now come to a basic formula for the Möbius function of a lattice. 

Theorem 2.2. (the Cross-Cut Theorem) Let L be a finite lattice. Let X be a subset 
of L such that ˆ ˆ0 ⇔≤ X, and such that if y ≤ L, y = 0, then some x ≤ X satisfies 
x → y. Let Nk be the number of k-element subsets of X with join ˆ

⇔ 
1. Then 

0, ̂µL(ˆ 1) = N0 −N1 + N2 − · · · . 
We will prove Theorem 2.2 by an algebraic method. Such a sophisticated proof 

is unnecessary, but the machinery we develop will be used later (Theorem 4.13). 
Let L be a finite lattice and K a field. The Möbius algebra of L, denoted A(L), is 
the semigroup algebra of L over K with respect to the operation ⇒. (Sometimes 
the operation is taken to be ∈ instead of ⇒, but for our purposes, ⇒ is more con­
venient.) In other words, A(L) = KL (the vector space with basis L) as a vector 
space. If x, y ≤ L then we define xy = x ⇒ y. Multiplication is extended to all 
of A(L) by bilinearity (or distributivity). Algebraists will recognize that A(L) is 
a finite-dimensional commutative algebra with a basis of idempotents, and hence 
is isomorphic to K#L (as an algebra). We will show this by exhibiting an explicit 

⊥= ∃ K#L For x ≤ L, define isomorphism A(L) . 

(8) πx µ(x, y)y ≤ A(L),= 
y∗x 

obius function of L. Thus by the M¨where µ denotes the M¨ obius inversion formula, 

(9) x = πy , for all x ≤ L. 

⎤
�

y∗x 

Equation (9) shows that the πx’s span A(L). Since #{πx : x #L =≤ L} = 
dim A(L), it follows that the πx’s form a basis for A(L). 

Theorem 2.3. Let x, y ≤ L. Then πxπy = ζxyπx, where ζxy is the Kronecker 
delta. In other words, the πx’s are orthogonal idempotents. Hence 

A(L) = 
�
 

K πx (algebra direct sum).·
x⊆L 

Proof. Define a K-algebra A�(L) with basis {π� : x ≤ L} and multiplication x 
π� π� = ζxyπ

� . For x ≤ L set x� = 
�

s∗x π
� . Thenx y x s⎤

�
�
⎢ 

�
⎢π� 

s π� 
tx y = 

s∗x t∗y 

π� 
s = 

s∗x 
s∗y 

π� 
s = 

s∗x∞y 

= (x ⇒ y)� . 
Hence the linear transformation � : A(L) ∃ A�(L) defined by �(x) = x is an 
algebra isomorphism. Since �(πx) = π� 

x, it follows that πxπy = ζxy πx. � 
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Note. The algebra A(L) has a multiplicative identity, viz., 1 = 0̂ = 
�

x⊆L πx. 
Proof of Theorem 2.2. Let char(K) = 0, e.g., K = Q. For any x ≤ L, we 

have in A(L) that 

0̂ − x = 
� 

πy −
� 

πy = 
� 

πy . 
y∗ˆ y∗x y ∈∗x0 

Hence by the orthogonality of the πy ’s we have 
� 

(0̂ − x) = 
� 

πy , 
x⊆X y 

where y ranges over all elements of L satisfying y ⇔⊂ x for all x ≤ X . By hypothesis, 
the only such element is 0̂. Hence 

� 
(0̂ − x) = π0̂. 

x⊆X 

If we now expand both sides as linear combinations of elements of L and equate 
coefficients of 1̂, the result follows. � 

Note. In a finite lattice L, an atom is an element covering 0̂. Let T be the set 
of atoms of L. Then a set X ∗ L − {0̂} satisfies the hypotheses of Theorem 2.2 if 
and only if T ∗ X . Thus the simplest choice of X is just X = T . 

Example 2.5. Let L = Bn, the boolean algebra of all subsets of [n]. Let X = T = 
. Then N0 = N1 = = Nn−1 = 0, Nn = 1. Hence µ(ˆ ˆ0, 1) = (−1)n ,{{i} : i ≤ [n]} · · · 

agreeing with Proposition 1.2. 

⇔ �

We will use the Crosscut Theorem to obtain a formula for the characteristic 
polynomial of an arrangement A. Extending slightly the definition of a central 
arrangement, call any subset B of A central if 

�
H⊆B H = . The following result 

is due to Hassler Whitney for linear arrangements. Its easy extension to arbitrary 
arrangements appears in [13, Lemma 2.3.8]. 

Theorem 2.4. (Whitney’s theorem) Let A be an arrangement in an n-dimensional 
vector space. Then 

n−rank(B)(10) ψA(t) = 
� 

(−1)#Bt . 
B→A 

B central 

Example 2.6. Let A be the arrangement in R2 shown below. 

c d 

a 

b 
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The following table shows all central subsets B of A and the values of #B and 
rank(B). 

B 

a 
b 
c 
d 
ac 
ad 
bc 
bd 
cd 
acd 

#B rank(B) 
0 0 
1 1 
1 1 
1 1 
1 1 
2 2 
2 2 
2 2 
2 2 
2 2 
3 2 

It follows that ψA(t) = t2 − 4t + (5 − 1) = t2 − 4t + 4. 

Proof of Theorem 2.4. Let z ≤ L(A). Let 

�z = {x ≤ L(A) : x → z}, 
the principal order ideal generated by z. Recall the definition 

Az = {H ≤ A : H → z (i.e., z ∗ H)}. 
By the Crosscut Theorem (Theorem 2.2), we have 

µ(z) = 
�

(−1)k Nk(z), 
k 

where Nk(z) is the number of k-subsets of Az with join z. In other words, 

µ(z) = 
� 

(−1)#B . 
B→Az 

z=
T

H�B H 

Note that z = 
�

H⊆B H implies that rank(B) = n − dim z. Now multiply both sides 
by tdim(z) and sum over z to obtain equation (10). � 

We have now assembled all the machinery necessary to prove the Deletion-
Restriction Lemma (Lemma 2.2) for ψA(t). 

Proof of Lemma 2.2. Let H0 ≤ A be the hyperplane defining the triple 
, A��(A, A� ). Split the sum on the right-hand side of (10) into two sums, depending 

on whether H0 ⇔≤ B or H0 ≤ B. In the former case we get 
n−rank(B) = ψA� (t).

� 
(−1)#Bt

H0 ∈⊆B→A

B central


In the latter case, set B1 = (B−{H0})H0 , a central arrangement in H0 
∪= Kn−1 and 

a subarrangement of AH0 = A�� . Since #B1 = #B − 1 and rank(B1) = rank(B) − 1, 
we get 

� 

H0 ⊆B→A 

(−1)#Btn−rank(B) = 
� 

B1 ⊆A�� 

(−1)#B1+1t(n−1)−rank(B1 ) 

B central 

= −ψA�� (t), 

and the proof follows. � 
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2.2. The number of regions 

The next result is perhaps the first major theorem in the subject of hyperplane 
arrangements, due to Thomas Zaslavsky in 1975. 

Theorem 2.5. Let A be an arrangement in an n-dimensional real vector space. 
Then 

(11)	 r(A) = (−1)nψA(−1) 

(−1)rank(A)ψA(1).(12)	 b(A) = 

First proof. Equation (11) holds for A = �, since r(�) = 1 and ψ�(t) = tn . 
By Lemmas 2.1 and 2.2, both r(A) and (−1)nψA(−1) satisfy the same recurrence, 
so the proof follows. 

Now consider equation (12). Again it holds for A = � since b(�) = 1. (Recall 
that b(A) is the number of relatively bounded regions. When A = �, the entire 
ambient space Rn is relatively bounded.) Now 

ψA(1) = ψA� (1) − ψA�� (1). 

Let d(A) = (−1)rank(A)ψA(1). If rank(A) = rank(A�) = rank(A��) + 1, then d(A) = 
= L(A��)d(A�) + d(A��). If rank(A) = rank(A�) + 1 then b(A) = 0 [why?] and L(A�) ∪

[why?]. Thus from Lemma 2.2 we have d(A) = 0. Hence in all cases b(A) and d(A) 
satisfy the same recurrence, so b(A) = d(A). � 

Second proof. Our second proof of Theorem 2.5 is based on Möbius inversion 
and some instructive topological considerations. For this proof we assume basic 
knowledge of the Euler characteristic ξ(�) of a topological space �. (Standard 
notation is ψ(�), but this would cause too much confusion with the character­
istic polynomial.) In particular, if � is suitably decomposed into cells with fi 

i-dimensional cells, then 

(13)	 ξ(�) = f0 − f1 + f2 − · · · . 

We take (13) as the definition of ξ(�). For “nice” spaces and decompositions, it is 
¯independent of the decomposition. In particular, ξ(Rn) = (−1)n . Write R for the 

closure of a region R ≤ R(A). 

¯Definition 2.4. A (closed) face of a real arrangement A is a set � = F = R ⊕ x,⇔
where R ≤ R(A) and x ≤ L(A). 

¯If we regard R as a convex polyhedron (possibly unbounded), then a face of 
¯A is just a face of some R in the usual sense of the face of a polyhedron, i.e., the 

¯ ¯intersection of R with a supporting hyperplane. In particular, each R is a face of 
A. The dimension of a face F is defined by 

dim(F ) = dim(aff(F )), 

where aff(F ) denotes the affine span of F . A k-face is a k-dimensional face of A. 
For instance, the arrangement below has three 0-faces (vertices), nine 1-faces, and 
seven 2-faces (equivalently, seven regions). Hence ξ(R2) = 3 − 9 + 7 = 1. 
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Write F(A) for the set of faces of A, and let relint denote relative interior. Then 

Rn = 
�� 

relint(F ), 
F ⊆F(A) 

where 
⎛ 

denotes disjoint union. If fk (A) denotes the number of k-faces of A, it 
follows that 

(−1)n = ξ(Rn) = f0(A) − f1(A) + f2(A) − · · · . 
Every k-face is a region of exactly one Ay for y ≤ L(A). Hence 

fk (A) = 
� 

r(Ay ). 
y⊆L(A) 

dim(y)=k 

Multiply by (−1)k and sum over k to get 

(−1)n = ξ(Rn) = 
� 

(−1)dim(y)r(Ay ). 
y⊆L(A) 

Replacing Rn by x ≤ L(A) gives 

(−1)dim(x) 
� 

(−1)dim(y)r(Ay ).= ξ(x) = 
y⊆L(A) 

y∗x 

Möbius inversion yields


(−1)dim(x)r(Ax
� 

(−1)dim(y)
) = µ(x, y). 
y⊆L(A) 

y∗x 

Putting x = Rn gives 

(−1)n r(A) = 
� 

(−1)dim(y)µ(y) = ψA(−1), 
y⊆L(A) 

thereby proving (11). 
The relatively bounded case (equation (12)) is similar, but with one technical 

complication. We may assume that A is essential, since b(A) = b(ess(A)) and 

ψA(t) = tdim(A)−dim(ess(A))ψess(A)(t). 

In this case, the relatively bounded regions are actually bounded. Let 

Fb(A) = {F ≤ F(A) : F is relatively bounded} 

� = 
� 

F. 
F ⊆Fb (A) 

The difficulty lies in computing ξ(�). Zaslavsky conjectured in 1975 that � is 
star-shaped, i.e., there exists x ≤ � such that for every y ≤ �, the line segment 
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a 

b 

dc 

a 

b 

c d 

Figure 2. Two arrangements with the same intersection poset 

joining x and y lies in �. This would imply that � is contractible, and hence (since 
� is compact when A is essential) ξ(�) = 1. A counterexample to Zaslavsky’s 
conjecture appears as an exercise in [5, Exer. 4.29], but nevertheless Björner and 
Ziegler showed that � is indeed contractible. (See [5, Thm. 4.5.7(b)] and Lecture 1, 
Exercise 7.) The argument just given for r(A) now carries over mutatis mutandis 
to b(A). There is also a direct argument that ξ(�) = 1, circumventing the need to 
show that � is contractible. We will omit proving here that ξ(�) = 1. � 

Corollary 2.1. Let A be a real arrangement. Then r(A) and b(A) depend only on 
L(A). 

Figure 2 shows two arrangements in R2 with different “face structure” but 
the same L(A). The first arrangement has for instance one triangular and one 
quadrilateral face, while the second has two triangular faces. Both arrangements, 
however, have ten regions and two bounded regions. 

We now give two basic examples of arrangements and the computation of their 
characteristic polynomials. 

Proposition 2.4. (general position) Let A be an n-dimensional arrangement of m 
hyperplanes in general position. Then 

�
m
� 

ψA(t) = tn −mtn−1 + 

�
m
� 

tn−2 . 
2 

− · · · + (−1)n

n 

In particular, if A is a real arrangement, then 
�
m
� �

m
� 

r(A) = 1 + m + 
2 

+ · · · + 
n 

b(A) = (−1)n 

� 

1 −m + 

�
m 
2 

� 

− · · · + (−1)n

�
m 
n 

�� 

= 

�
m − 1

� 

. 
n 

Proof. Every B ∗ A with #B n defines an element xB = 
�

H⊆B H of L(A).→
Hence L(A) is a truncated boolean algebra: 

= {S ∗ [m] : #SL(A) ∪ → n}, 
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Figure 3. The truncated boolean algebra of rank 2 with four atoms 

ordered by inclusion. Figure 3 shows the case n = 2 and m = 4, i.e., four lines in 
general position in R2 . If x ≤ L(A) and rk(x) = k, then [ˆ =0, x] ∪ Bk, a boolean 
algebra of rank k. By equation (4) there follows µ(x) = (1)k . Hence 

n−#SψA(t) = 
� 

(−1)#S t
S→[m] 
#S⊇n �

m
� 

= tn −mtn−1 + · · · + (−1)n . � 
n 

Note. Arrangements whose hyperplanes are in general position were formerly 
called free arrangements. Now, however, free arrangements have another meaning 
discussed in the note following Example 4.11. 

Our second example concerns generic translations of the hyperplanes of a lin­
ear arrangement. Let L1, . . . , Lm be linear forms, not necessarily distinct, in the 
variables v = (v1, . . . , vn) over the field K. Let A be defined by 

L1(v) = a1, . . . , Lm(v) = am, 

where a1, . . . , am are generic elements of K. This means if Hi = ker(Li(v) − ai), 
then 

= , . . . , Lik are linearly independent. Hi1 ⊕ · · · ⊕Hik ⇔ � √ Li1 

For instance, if K = R and L1, . . . , Lm are defined over Q, then a1, . . . , am are 
generic whenever they are linearly independent over Q. 

nongeneric generic 

0, x] ∪It follows that if x = Hi1 ≤ L(A), then [ˆ = Bk . Hence⊕ · · · ⊕Hik 

n−#BψA(t) = 
�

(−1)#Bt , 
B 
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1	 6 3 12 4 12 

Figure 4. The forests on four vertices 

where B ranges over all linearly independent subsets of A. (We say that a set of hy­
perplanes are linearly independent if their normals are linearly independent.) Thus 
ψA(t), or more precisely (−t)nψA(−1/t), is the generating function for linearly 
independent subsets of L1, . . . , Lm according to their number of elements. For in­
stance, if A is given by Figure 2 (either arrangement) then the linearly independent 
subsets of hyperplanes are �, a, b, c, d, ac, ad, bc, bd, cd, so ψA(t) = t2 − 4t + 5. 

Consider the more interesting example xi − xj = aij , 1 → i < j → n, where the 
aij are generic. We could call this arrangement the generic braid arrangement Gn. 
Identify the hyperplane xi − xj = aij with the edge ij on the vertex set [n]. Thus 
a subset B ∗ Gn corresponds to a simple graph GB on [n]. (“Simple” means that 
there is at most one edge between any two vertices, and no edge from a vertex to 
itself.) It is easy to see that B is linearly independent if and only if the graph GB 

has no cycles, i.e., is a forest. Hence we obtain the interesting formula 
n−e(F )(14)	 ψGn (t) = 

�
(−1)e(F )t , 

F 

where F ranges over all forests on [n] and e(F ) denotes the number of edges of 
F . For instance, the isomorphism types of forests (with the number of distinct 
labelings written below the forest) on four vertices are given by Figure 4. Hence 

2ψG4 (t) = t4 − 6t3 + 15t − 16t.


Equation (11) can be rewritten as

� 

(−1)rk(x)
r(A) = µ(x). 
x⊆L(A) 

(Theorem 3.10 will show that (−1)rk(x)µ(x) > 0, so we could also write µ(x) for| |
this quantity.) It is easy to extend this result to count faces of A of all dimensions, 
not just the top dimension n. Let fk (A) denote the number of k-faces of the real 
arrangement A. 

Theorem 2.6. We have 

(15) fk(A) = 
� 

(−1)dim(x)−dim(y)µ(x, y) 
x⊇y in L(A) 

dim(x)=k 

(16) = 
� 

x⊇y in L(A) 

|µ(x, y)|. 

dim(x)=k 

Proof. As mentioned above, every face F is a region of a unique Ax for x ≤ L(A), 
viz., x = aff(F ). In particular, dim(F ) = dim(x). Hence if dim(F ) = k, then r(Ax) 
is the number of k-faces of A contained in x. By Theorem 2.5 and equation (7) we 
get 

(−1)dim(y)−dim(x)r(Ax) = 
�	

µ(x, y), 
y∗x 
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where we are dealing with the poset L(A). Summing over all x ≤ L(A) of dimension 
k yields (15), and (16) then follows from Theorem (3.10) below. � 

2.3. Graphical arrangements 

There are close connections between certain invariants of a graph G and an asso­
ciated arrangement AG. Let G be a simple graph on the vertex set [n]. Let E(G) 
denote the set of edges of G, regarded as two-element subsets of [n]. Write ij for 
the edge {i, j}. 
Definition 2.5. The graphical arrangement AG in Kn is the arrangement 

xi − xj = 0, ij ≤ E(G). 

Thus a graphical arrangement is simply a subarrangement of the braid arrange­
ment Bn. If G = Kn, the complete graph on [n] (with all possible edges ij), then 
AKn = Bn. 

Definition 2.6. A coloring of a graph G on [n] is a map � : [n] ∃ P. The coloring 
� is proper if �(i) = �(j) whenever ij ≤ E(G). If q ≤ P then let ψG(q) denote the ⇔
number of proper colorings � : [n] ∃ [q] of G, i.e., the number of proper colorings 
of G whose colors come from 1, 2, . . . , q. The function ψG is called the chromatic 
polynomial of G. 

For instance, suppose that G is the complete graph Kn. A proper coloring 
� : [n] ∃ [q] is obtained by choosing a vertex, say 1, and coloring it in q ways. 
Then choose another vertex, say 2, and color it in q − 1 ways, etc., obtaining 

(17) ψKn (q) = q(q − 1) · · · (q − n+ 1). 

A similar argument applies to the graph G of Figure 5. There are q ways to color 
vertex 1, then q − 1 to color vertex 2, then q − 1 to color vertex 3, etc., obtaining 

ψG(q) = q(q − 1)(q − 1)(q − 2)(q − 1)(q − 1)(q − 2)(q − 2)(q − 3) 

= q(q − 1)4(q − 2)3(q − 3). 

Unlike the case of the complete graph, in order to obtain this nice product formula 
one factor at a time only certain orderings of the vertices are suitable. It is not 
always possible to evaluate the chromatic polynomials “one vertex at a time.” For 
instance, let H be the 4-cycle of Figure 5. If a proper coloring � : [4] ∃ [q] satisfies 
�(1) = �(3), then there are q choices for �(1), then q − 1 choices each for �(2) and 
�(4). On the other hand, if �(1) = �(3), then there are q choices for �(1), then ⇔ 
q − 1 choices for �(3), and then q − 2 choices each for �(2) and �(4). Hence 

ψH (q) = q(q − 1)2 + q(q − 1)(q − 2)2 

= q(q − 1)(q 2 − 3q + 3). 

For further information on graphs whose chromatic polynomial can be evaluated 
one vertex at a time, see Corollary 4.10 and the note following it. 

It is easy to see directly that ψG(q) is a polynomial function of q. Let ei(G) 
denote the number of surjective proper colorings � : [n] ∃ [i] of G. We can choose 
an arbitrary proper coloring � : [n] ∃ [q] by first choosing the size i = #�([n]) of 
its image in 

⎜
q
i

� 
ways, and then choose � in ei ways. Hence 

n

(18) ψG(q) = 
� 

ei 

�
q
� 

. 
i 

i=0 
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Figure 5. Two graphs 

Since 
⎜
q
� 

= q(q−1) · · · (q−i+1)/i!, a polynomial in q (of degree i), we see that ψG(q)i
is a polynomial. We therefore write ψG(t), where t is an indeterminate. Moreover, 
any surjection (= bijection) � : [n] ∃ [n] is proper. Hence en = n!. It follows from 
equation (18) that ψG(t) is monic of degree n. Using more sophisticated methods 
we will later derive further properties of the coefficients of ψG(t). 

Theorem 2.7. For any graph G, we have ψAG (t) = ψG(t). 

First proof. The first proof is based on deletion-restriction (which in the 
context of graphs is called deletion-contraction). Let e = ij ≤ E(G). Let G − e 
(also denoted G\e) denote the graph G with edge e deleted, and let G/e denote G 
with the edge e contracted to a point and all multiple edges replaced by a single 
edge (i.e., whenever there is more than one edge between two vertices, replace these 
edges by a single edge). (In some contexts we want to keep track of multiple edges, 
but they are irrelevant in regard to proper colorings.) 

1 

2 
e 

4 

3 

5 

1 

2 

3 

4 

5 

1 

23 

4 

5 

G G−e G/e 

Let H0 ≤ A = AG be the hyperplane xi = xj . It is clear that A−{H0} = AG−e. 
We claim that 

(19) AH0 = AG/e, 

so by Deletion-Restriction (Lemma 2.2) we have 

ψAG (t) = ψAG−e (t) = ψAG/e (t). 
⊥= 

To prove (19), define an affine isomorphism � : H0 ∃ Rn−1 by 

(x1, x2, . . . , xn) �∃ (x1, . . . , xi, . . . , x̂j , . . . , xn), 

where x̂j denotes that the jth coordinate is omitted. (Hence the coordinates in 
ˆRn−1 are 1, 2, . . . , j, . . . , n.) Write Hab for the hyperplane xa = xb of A. If neither 

of a, b are equal to i or j, then �(Hab ⊕ H0) is the hyperplane xa = xb in Rn−1 . If 
a = i, j then �(Hia ⊕H0) = �(Haj ⊕H0), the hyperplane xa = xi in Rn−1 . Hence �⇔ 
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G 

F 

Figure 6. A graph G with edge subset F and closure F̄

defines an isomorphism between AH0 and the arrangement AG/e in Rn−1, proving 
(19). 

Let n denote the graph with n vertices and no edges, and let � denote• 
the empty arrangement in Rn . The theorem will be proved by induction (using 
Lemma 2.2) if we show: 

(a) Initialization: ψn•(t) = ψ�(t) 
(b) Deletion-contraction: 

(20) ψG(t) = ψG−e(t) − ψG/e(t) 
nTo prove (a), note that both sides are equal to t . To prove (b), observe that 

ψG−e(q) is the number of colorings of � : [n] ∃ [q] that are proper except possibly 
�(i) = �(j), while ψG/e(q) is the number of colorings � : [n] ∃ [q] of G that are 
proper except that �(i) = �(j). � 

Our second proof of Theorem 2.7 is based on Möbius inversion. We first obtain 
a combinatorial description of the intersection lattice L(AG). Let Hij denote the 
hyperplane xi = xj as above, and let F ∗ E(G). Consider the element X = �

ij⊆F Hij of L(AG). Thus 

(x1, . . . , xn) ≤ X √ xi = xj whenever ij ≤ F. 

Let C1, . . . , Ck be the connected components of the spanning subgraph GF of G 
with edge set F . (A subgraph of G is spanning if it contains all the vertices of G. 
Thus if the edges of F do not span all of G, we need to include all remaining vertices 
as isolated vertices of GF .) If i, j are vertices of some Cm, then there is a path from 
i to j whose edges all belong to F . Hence xi = xj for all (x1, . . . , xn) ≤ X . On the 
other hand, if i and j belong to different Cm’s, then there is no such path. Let 

F̄ = {e = ij ≤ E(G) : i, j ≤ V (Cm) for some m}, 
where V (Cm) denotes the vertex set of Cm. Figure 6 illustrates a graph G with 

¯a set F of edges indicated by thickening. The set F is shown below G, with the 
¯additional edges F − F not in F drawn as dashed lines. 

A partition β of a finite set S is a collection {B1, . . . , Bk } of subsets of S, called 
blocks, that are nonempty, pairwise disjoint, and whose union is S. The set of all 
partitions of S is denoted ΓS , and when S = [n] we write simply Γn for Γ[n]. It 
follows from the above discussion that the elements X� of L(AG) correspond to the 
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Figure 7. A graph G and its bond lattice LG 

connected partitions of V (G), i.e., the partitions β = {B1, . . . , Bk } of V (G) = [n] 
such that the restriction of G to each block Bi is connected. Namely, 

X� = {(x1, . . . , xn) ≤ Kn : i, j ≤ Bm for some m ⊆ xi = xj }. 
We have X� Xπ in L(A) if and only if every block of β is contained in a block of →
π. In other words, β is a refinement of π. This refinement order is the “standard” 
ordering on Γn, so L(AG) is isomorphic to an induced subposet LG of Γn, called 
the bond lattice or lattice of contractions of G. (“Induced” means that if β π 

∪
→

in Γn and β, π ≤ L(AG), then β π in L(AG).) In particular, Γn = L(AKn ).→
Note that in general LG is not a sublattice of Γn, but only a sub-join-semilattice of 
Γn [why?]. The bottom element 0̂ of LG is the partition of [n] into n one-element 
blocks, while the top element 1̂ is the partition into one block. The case G = Kn 

shows that the intersection lattice L(Bn) of the braid arrangement Bn is isomorphic 
to the full partition lattice Γn. Figure 7 shows a graph G and its bond lattice LG 

(singleton blocks are omitted from the labels of the elements of LG). 
Second proof of Theorem 2.7. Let β ≤ LG. For q ≤ P define ψ� (q) to be 

the number of colorings � : [n] ∃ [q] of G satisfying: 

• If i, j are in the same block of β, then �(i) = �(j). 
• If i, j are in different blocks of β and ij ≤ E(G), then �(i) = �(j).⇔ 

Given any � : [n] ∃ [q], there is a unique π ≤ LG such that � is enumerated by 
ψπ (q). Moreover, � will be constant on the blocks of some β ≤ LG if and only if 
π ⊂ β in LG. Hence 

q|�| = 
� 

ψπ (q) ≡β ≤ LG, 
π∗� 

where β denotes the number of blocks of β. By Möbius inversion, | | 

ψ� (q) = 
� 

q|π|µ(β, π), 
π∗� 

obius function of LG. Let β = ˆwhere µ denotes the M¨ 0. We get 

(21) ψG(q) = ψ0̂(q) = 
� 

µ(π)q|π|. 
π⊆LG 
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It is easily seen that π = dim Xπ , so comparing equation (21) with Definition 1.3 | |
shows that ψG(t) = ψAG (t). � 

Corollary 2.2. The characteristic polynomial of the braid arrangement Bn is given 
by 

ψBn (t) = t(t− 1) · · · (t− n+ 1). 

Proof. Since Bn = AKn (the graphical arrangement of the complete graph Kn), 
we have from Theorem 2.7 that ψBn (t) = ψKn (t). The proof follows from equation 
(17). � 

There is a further invariant of a graph G that is closely connected with the 
graphical arrangement AG. 

Definition 2.7. An orientation o of a graph G is an assignment of a direction 
i ∃ j or j ∃ i to each edge ij of G. A directed cycle of o is a sequence of vertices 
i0, i1, . . . , ik of G such that i0 ∃ i1 ∃ i2 ∃ · · · ∃ ik ∃ i0 in o. An orientation o is 
acyclic if it contains no directed cycles. 

A graph G with no loops (edges from a vertex to itself) thus has 2#E(G) orien­
tations. Let R ≤ R(AG), and let (x1, . . . , xn) ≤ R. In choosing R, we have specified 
for all ij ≤ E(G) whether xi < xj or xi > xj . Indicate by an arrow i ∃ j that 
xi < xj , and by j ∃ i that xi > xj . In this way the region R defines an orientation 
oR of G. Clearly if R = R�, then oR = oR� . Which orientations can arise in this ⇔ ⇔
way? 

Proposition 2.5. Let o be an orientation of G. Then o = oR for some R ≤ R(AG) 
if and only if o is acyclic. 

Proof. If oR had a cycle i1 ∃ i2 ∃ · · · ∃ ik ∃ i1, then a point (x1, . . . , xn) ≤ R 
would satisfy xi1 < xi2 < < xik < xi1 , which is absurd. Hence oR is acyclic. · · · 

Conversely, let o be an acyclic orientation of G. First note that o must have a 
sink, i.e., a vertex with no arrows pointing out. To see this, walk along the edges 
of o by starting at any vertex and following arrows. Since o is acyclic, we can never 
return to a vertex so the process will end in a sink. Let jn be a sink vertex of o. 
When we remove jn from o the remaining orientation is still acyclic, so it contains 
a sink jn−1. Continuing in this manner, we obtain an ordering j1, j2, . . . , jn of [n] 
such that ji is a sink of the restriction of o to j1, . . . , ji. Hence if x1, . . . , xn ≤ R 
satisfy xj1 < xj2 < < xjn then the region R ≤ R(A) containing (x1, . . . , xn)· · · 
satisfies o = oR. � 

Note. The transitive, reflexive closure ō of an acyclic orientation o is a par­
tial order. The construction of the ordering j1, j2, . . . , jn above is equivalent to 
constructing a linear extension of o. 

Let AO(G) denote the set of acyclic orientations of G. We have constructed a 
bijection between AO(G) and R(AG). Hence from Theorem 2.5 we conclude: 

Corollary 2.3. For any graph G with n vertices, we have #AO(G) = (−1)nψG(−1). 

Corollary 2.3 was first proved by Stanley in 1973 by a “direct” argument based 
on deletion-contraction (see Exercise 7). The proof we have just given based on 
arrangements is due to Greene and Zaslavsky in 1983. 

Note. Given a graph G on n vertices, let A# be the arrangement defined by G 

xi − xj = aij , ij ≤ E(G), 
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where the aij ’s are generic. Just as we obtained equation (14) (the case G = Kn) 
we have 

n−e(F )ψ # (t) = 
�

(−1)e(F )t ,
AG 

F 

where F ranges over all spanning forests of G. 


