LECTURE 4
Broken circuits, modular elements, and supersolvability

This lecture is concerned primarily with matroids and geometric lattices. Since
the intersection lattice of a central arrangement is a geometric lattice, all our results
can be applied to arrangements.

4.1. Broken circuits

For any geometric lattice L and = < y in L, we have seen (Theorem 3.10) that
(—1)™=¥) y(z,y) is a positive integer. It is thus natural to ask whether this integer
has a direct combinatorial interpretation. To this end, let M be a matroid on the
set S = {u1,...,un}. Linearly order the elements of S, say u; < ug < -+ < Up,.
Recall that a circuit of M is a minimal dependent subset of S.

Definition 4.10. A broken circuit of M (with respect to the linear ordering O of
S) is a set C — {u}, where C is a circuit and u is the largest element of C' (in the
ordering O). The broken circuit complex BCo(M) (or just BC(M) if no confusion
will arise) is defined by

BC(M)={T C S : T contains no broken circuit}.
Figure 1 shows two linear orderings O and O’ of the points of the affine matroid
M of Figure 1 (where the ordering of the pointsis 1 < 2 < 3 < 4 < 5). With respect
to the first ordering O the circuits are 123, 345, 1245, and the broken circuits are
12, 34, 124. With respect to the second ordering O’ the circuits are 123, 145, 2345,
and the broken circuits are 12, 14, 234.

It is clear that the broken circuit complex BC(M) is an abstract simplicial
complex, ie., if T € BC(M) and U C T, then U € BC(M). In Figure 1 we
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Figure 1. Two linear orderings of the matroid M of Figure 1
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have BCo (M) = (135, 145,235, 245), while BCy/ (M) = (135,235,245, 345). These
simplicial complexes have geometric realizations as follows:

1 3

4 2

Note that the two simplicial complexes BCo(M) and BCy/ (M) are not iso-
morphic (as abstract simplicial complexes); in fact, their geometric realizations are
not even homeomorphic. On the other hand, if f;(A) denotes the number of i-
dimensional faces (or faces of cardinality i — 1) of the abstract simplicial complex
A, then for A given by either BCo (M) or BCy/ (M) we have

f-1(A) =1, fo(A) =5, fi(A) =8, f2(A) =4.
Note, moreover, that
xar(t) =13 — 5t2 + 8t — 4

In order to generalize this observation to arbitrary matroids, we need to introduce
a fair amount of machinery, much of it of interest for its own sake. First we give
a fundamental formula, known as Philip Hall’s theorem, for the Mdobius function
value (0, 1).

Lemma 4.4. Let P be a finite poset with 0 and 1, and with Mébius function L.
Let ¢; denote the number of chains 0 =yo <y, < --- <wy; =1 in P. Then
u(@,i):—cl+02—03+--~ .
Proof. We work in the incidence algebra J(P). We have
M(Oai) = C_l(ovi)
= (6+(¢—49))71(0,1)
= 0(0,1) = (¢ =8)(0,1) + (¢ = 6)*(0,1) —---.
This expansion is easily justified since (¢ —8)*(0,1) = 0 if the longest chain of P has
length less than k. By definition of the product in J(P) we have (¢ —6)%(0,1) = ¢,
and the proof follows. R R o O
NoOTE. Let P be a finite poset with 0 and 1, and let P’ = P — {0,1}. Define
A(P’) to be the set of chains of P’, so A(P’) is an abstract simplicial complex. The
reduced Fuler characteristic of a simplicial complex A is defined by
XP)=—fa+fo—fit+-,

where f; is the number of i-dimensional faces F € A (or #F =i+ 1). Comparing
with Lemma 4.4 shows that

w(0,1) = X(A(P)).

Readers familiar with topology will know that y¥(A) has important topological sig-
nificance related to the homology of A. It is thus natural to ask whether results
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(@ (b) (©
Figure 2. Three examples of edge-labelings

concerning Md&bius functions can be generalized or refined topologically. Such re-
sults are part of the subject of “topological combinatorics,” about which we will
say a little more later.

Now let P be a finite graded poset with 0 and 1. Let

&(P) ={(z,y) : x <y in P},
the set of (directed) edges of the Hasse diagram of P.

Definition 4.11. An E-labeling of P is a map A : &(P) — P such that if z < y in
P then there exists a unique saturated chain

Cir=ag<x1 <1< - <Tp =Yy

satisfying
A(:CO?:El) S )\(ml,ZCQ) S e S )\(xk—lvxk)-

We call C the increasing chain from x to y.

Figure 2 shows three examples of posets P with a labeling of their edges, i.e.
a map A : E&(P) — P. Figure 2(a) is the boolean algebra Bs with the labeling
A(S,S U{i}) = i. (The one-element subsets {i} are also labelled with a small
i.) For any boolean algebra B, this labeling is the archetypal example of an E-
labeling. The unique increasing chain from S to 7' is obtained by adjoining to S
the elements of T'— S one at a time in increasing order. Figures 2(b) and (c) show
two different E-labelings of the same poset P. These labelings have a number of
different properties, e.g., the first has a chain whose edge labels are not all different,
while every maximal chain label of Figure 2(c) is a permutation of {1, 2}.

Theorem 4.11. Let \ be an E-labeling of P, and let © < y in P. Let u denote
the Mébius function of P. Then (—1)"%@¥) (2, ) is equal to the number of strictly
decreasing saturated chains from x to vy, i.e.,

(—1)" (2, y) =
#Hr=xo<z1 < <z =y : Mxo,z1) > AMz1,22) > -+ > NMag_1,2r)}-

Proof. Since A restricted to [z,y] (i-e., to £([x,y])) is an E-labeling, we can assume
[z,y] = [0,1] = P. Let S = {a1,az,...,a;_1} C [n—1], with a; < as < --- < a;j_1.
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Define ap(S) to be the number of chains O<y <--- < Yj—1 < 1 in P such that
rk(y;) = a; for 1 <i < j — 1. The function ap is called the flag f-vector of P.

Claim. ap(S) is the number of maximal chains 0=x¢<z < <z, = 1such
that

(27) i1, 2:) > Mg, wi01) = 1€ 5, 1 <i<n.

To prove the claim, let 0 = yo < 31 < -+ < Yi—1 < Y; = 1 with rk(y;) = a; for
1 <1i < j—1. By the definition of E-labeling, there exists a unique refinement

O=yw=20<21 < <Tg, =N < T 41 < < Ty, =Y <<y =y; =1

satisfying
)\(ZL'(),IITl) S )\(z171‘2) S e S )\(xalfhxal)

A(xalvxa1+1) < )\(l'a1+1,='17a1+2) << A(za2,1,$a2)

Thus if A(z;—1,2;) > A(xi, zi+1), then i € S, so (27) is satisfied. Conversely, given
a maximal chain 0 = 29 < z; < --- < z,, = 1 satisfying the above conditions on A,
let y; = x4,. Therefore we have a bijection between the chains counted by ap(S)
and the maximal chains satisfying (27), so the claim follows.

Now for S C [n — 1] define
(28) Br(S) = > (~1)*EDap(T).
TCS

The function Gp is called the flag h-vector of P. A simple Inclusion-Exclusion
argument gives

(29) ap(S) = Z Bp(T),
TCS
for all S C [n—1]. It follows from the claim and equation (29) that Gp(T) is equal to
the number of maximal chains 0 = 2o <1 <--- <, = 1 such that A\(z;) > M(@i11)
if and ounly if ¢ € T. In particular, Bp([n — 1]) is equal to the number of strictly
decreasing maximal chains 0 = zg <21 <--- <z, = 1 of P, i.e.,
Mo, z1) > AMz1,22) > -+ > ANTp—1,2n)-

Now by (28) we have

Bp(ln—1]) = Z (—)" " #ap(T)

TCln—1]

S SR

k21 0=yo<y1 <+ <yr=1

1" S (- 1re,

k>1

where ¢; is the number of chains 0 = g < 1 < --- < y; = 1 in P. The proof now
follows from Philip Hall’s theorem (Lemma 4.4). O

We come to the main result of this subsection, a combinatorial interpretation
of the coefficients of the characteristic polynomial xas(t) for any matroid M.
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Figure 3. The edge labeling ) of a geometric lattice L(M)

Theorem 4.12. Let M be a matroid of rank n with a linear ordering x1 < xo <
<o < &y, of its points (so the broken circuit complex BC(M) is defined), and let
0<i<mn. Then

(=1 [t""Ixar(t) = fim1(BC(M)).

Proof. We may assume M is simple since the “simplification” M has the same
lattice of flats and same broken circuit complex as M (Exercise 1). The atoms z; of
L(M) can then be identified with the points of M. Define a labeling A : E(L(M)) —
PP as follows. Let z <y in L(M). Then set
(30) Az, y) = max{i : =V az; =y}
Note that A(z,y) is defined since L(M) is atomic.

As an example, Figure 3 shows the lattice of flats of the matroid M of Figure 1
with the edge labeling (30).

Claim 1. Define X : E(L(M)) — P by

Mz, y) =m+1—Az,y).

Then A is an E-labeling.
To prove this claim, we need to show that for all x < y in L(M) there is a
unique saturated chain © = yp < y1 <--- <y = y satisfying

:\(yo»yl) > 5\(91»y2) > > S\(iyk—l,yk)-

The proof is by induction on k. There is nothing to prove for £ = 1. Let k£ > 1 and
assume the assertion for k — 1. Let

j=max{i : x; <y, x; £x}.
For any saturated chain z =z20<n < <z =Y, there is some i for which
xj; £ z; and ; < z;41. Hence A(z;, zi41) = j. Thus if A(20, 21) > -+ > A(zk—1, 2x),
then A(zo,21) = j. Moreover, there is a unique y; satisfying ¢ = z¢ < y; <y and
Mzo,y1) = j, viz., y1 = xo V xj. (Note that y; >z by semimodularity.)
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By the induction hypothesis there exists a unique saturated chain y; <y <
- <yp = y satisfying A(y1,y2) = -+ = AMYre—1, yx)- Since A(yo, y1) = j > A(y1,92),
the proof of Claim 1 follows by induction.

Claim 2. The broken circuit complex BC(M) consists of all chain labels A\(C'),
where C' is a saturated increasing chain (with respect to 5\) from 0 to some z €
L(M). Moreover, all such A(C) are distinct.

To prove the distinctness of the labels A(C), suppose that C is given by 0=
Yo <y1 < - <Yk, with S\(C’) = (a1,a2,...,ax). Then y; = y;—1 V 2,4,, so C is the
only chain with its label.

Now let C and S\(C) be as in the previous paragraph. We claim that the
set {Tq,,...,%q, } contains no broken circuit. (We don’t even require that C' is
increasing for this part of the proof.) Write z; = z,,, and suppose to the contrary
that B = {z;,,...,2,} is a broken circuit, with 1 <4; <--- <i; < k. Let BU{xz,}
be a circuit with r > a;, for 1 < ¢ < j. Now for any circuit {u,...,us} and any
1 <7 < h we have

urVugV---Vup=u1 V- VU1 VUiy1 V- Vup.

Thus
Ziy V Ziy \/--~\/zij71 Vi, = \/ Z =z \/ziz\/-~-\/zij.
z€B
Then y;;—1 V x. = y;,;, contradicting the maximality of the label a;;. Hence
{Tay,-.-,%a,} € BC(M).
Conversely, suppose that T := {4, ..., Zq, } contains no broken circuit, with

a; < -+ <ag. Lety; = x4, V- -Va,,, and let C be the chain 0 := yo <y <--- <Yp.
(Note that C is saturated by semimodularity.) We claim that A\(C) = (a1, ..., ax).
If not, then y;_1 V z; = y; for some j > a;. Thus

rk(T) =1k(T' U {z;}) = 1.

Since T is independent, T'U {z;} contains a circuit @ satisfying z; € @, so T
contains a broken circuit. This contradiction completes the proof of Claim 2.

To complete the proof of the theorem, note that we have shown that f;_; (BC(M))
is the number of chains C': 0 = yo < y; < - - - <y; such that S\(C’) is strictly increas-
ing, or equivalently, A\(C) is strictly decreasing. Since X is an E-labeling, the proof
follows from Theorem 4.11. O

Corollary 4.6. The broken circuit complex BC(M) is pure, i.e., every mazimal
face has the same dimension.

to be inserted. ]

NOTE (for readers with some knowledge of topology). (a) Let M be a matroid
on the linearly ordered set uq < ug < -+ < uy,. Note that F' € BC(M) if and only
if FU{u,} € BC(M). Define the reduced broken circuit complex BC,.(M) by

BC,(M)={F eBC(M) : un, & F}.
Thus
BC(M) = BC,.(M) * ty,,
the join of BC,.(M) and the vertex u,,. Equivalently, BC(M) is a cone over BC,. (M)
with apex u,,. As a consequence, BC(M) is contractible and therefore has the ho-

motopy type of a point. A more interesting problem is to determine the topological
nature of BC,(M). It can be shown that BC,.(M) has the homotopy type of a wedge
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of B(M) spheres of dimension rank(M) — 2, where (—1)2kM=15(M) = x',(1)
(the derivative of xar(t) at t = 1). See Exercise 21 for more information on G(M).
(b) [to be inserted]
As an example of the applicability of our results on matroids and geometric
lattices to arrangements, we have the following purely combinatorial description of
the number of regions of a real central arrangement.

Corollary 4.7. Let A be a central arrangement in R™, and let M be the matroid
defined by the normals to H € A, i.e., the independent sets of M are the linearly
independent normals. Then with respect to any linear ordering of the points of M,
r(A) is the total number of subsets of M that don’t contain a broken circuit.

Proof. Immediate from Theorems 2.5 and 4.12. O

4.2. Modular elements

We next discuss a situation in which the characteristic polynomial xas(t) factors in
a nice way.

Definition 4.12. An element x of a geometric lattice L is modular if for all y € L
we have

(31) rk(z) + rk(y) = rk(z A y) + tk(z V y).
Example 4.9. Let L be a geometric lattice.

(a) 0 and 1 are clearly modular (in any finite lattice).
(b) We claim that atoms a are modular.

Proof. Suppose that a < y. Then a Ay = a and a V y = y, so equation
(31) holds. (We don’t need that a is an atom for this case.) Now suppose
a £ y. By semimodularity, rk(a V y) = 1 4 rk(y), while rk(a) = 1 and
rk(a A y) = rk(0) = 0, so again (31) holds. O

(¢) Suppose that rk(L) = 3. All elements of rank 0, 1, or 3 are modular by
(a) and (b). Suppose that rk(z) = 2. Then z is modular if and only if for
all elements y # x and rk(y) = 2, we have that rk(z A y) = 1.

(d) Let L = B,,. If z € B,, then rk(z) = #x. Moreover, for any z,y € B,, we
have x Ay =x Ny and x Vy = x Uy. Since for any finite sets = and y we
have

#r+#ty = #(@Ny) + #(xVy),
it follows that every element of B,, is modular. In other words, B, is a
modular lattice.

(e) Let ¢ be a prime power and F, the finite field with ¢ elements. Define
B, (q) to be the lattice of subspaces, ordered by inclusion, of the vector
space Fg. Note that B, (q) is also isomorphic to the intersection lattice
of the arrangement of all linear hyperplanes in the vector space F,(q).
Figure 4 shows the Hasse diagrams of Bs(3) and B3(2).

Note that for z,y € B,(q) we have z Ay =zNyand aVy=xz+y
(subspace sum). Clearly B, (¢) is atomic: every vector space is the join
(sum) of its one-dimensional subspaces. Moreover, By, (q) is graded of rank
n, with rank function given by rk(z) = dim(z). Since for any subspaces
z and y we have

dim(z) + dim(y) = dim(z Ny) + dim(z + y),
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B,(3)

Figure 4. The lattices B2(3) and B3(2)

it follows that L is a modular geometric lattice. Thus every x € L is
modular.

NOTE. A projective plane R consists of a set (also denoted R) of
points, and a collection of subsets of R, called lines, such that: (a) every
two points lie on a unique line, (b) every two lines intersect in exactly one
point, and (c) (non-degeneracy) there exist four points, no three of which
are on a line. The incidence lattice L(R) of R is the set of all points
and lines of R, ordered by p < L if p € L, with 0 and 1 adjoined. It
is an immediate consequence of the axioms that when R is finite, L(R)
is a modular geometric lattice of rank 3. It is an open (and probably
intractable) problem to classify all finite projective planes. Now let P and
Q@ be posets and define their direct product (or cartesian product) to be
the set

PxQ=A{(x,y) :xe b yecl}

ordered componentwise, i.e., (z,y) < (z/,y') ifz < 2’ and y < y'. It is easy
to see that if P and @ are geometric (respectively, atomic, semimodular,
modular) lattices, then so is P x @ (Exercise 7). It is a consequence of the
“fundamental theorem of projective geometry” that every finite modular
geometric lattice is a direct product of boolean algebras B,,, subspace
lattices By (q) for n > 3, lattices of rank 2 with at least five elements
(which may be regarded as Ba(q) for any g > 2) and incidence lattices of
finite projective planes.

The following result characterizes the modular elements of II,,, which is
the lattice of partitions of [n] or the intersection lattice of the braid ar-
rangement B,,.

Proposition 4.9. A partition = € II,, is a modular element of I1,, if
and only if m has at most one nonsingleton block. Hence the number of
modular elements of 1L, is 2" — n.

Proof. If all blocks of 7 are singletons, then 7 = 0, which is modular by
(a). Assume that 7 has the block A with r > 1 elements, and all other
blocks are singletons. Hence the number || of blocks of 7 is given by
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n —r+ 1. For any o € II,,, we have rk(o) =n — |o|. Let k = |o| and
j=#{B€o: ANB #0}.

Then |t Ao| =7+ (n—r)and |[vVo|=k—j+1. Hence rk(n) =7 —1,
tk(c) =n—k,tk(r Ao) =r—j,andrk(rVo)=n—k+j—1,s07is
modular.

Conversely, let m = {By, Ba,..., B} with #B; > 1 and #By > 1.
Let a € By and b € By, and set

U:{(Bl Ub)—a,(BQUa)—b,B3,...,Bk}.

Then
7| =lo| =k
7Aoo = {a,b,By—a,By—b,...,B3,...,B,} = |tAo|=k+2
Vo = {B1UDBy Bs,...,Bi} = |rVo|=k-1.

Hence rk(7) + rk(o) # rk(m A o) 4+ tk(7 V o), so 7 is not modular. O

In a finite lattice L, a complement of x € L is an element y € L such that
zAy=0and zVy = 1. For instance, in the boolean algebra B,, every element has
a unique complement. (See Exercise 3 for the converse.) The following proposition
collects some useful properties of modular elements. The proof is left as an exercise
(Exercises 4-5).

Proposition 4.10. Let L be a geometric lattice of rank n.

(a) Let x € L. The following four conditions are equivalent.
(i) x is a modular element of L.
(i) Ifx Ay =0, then rk(x) + rk(y) = rk(z V).
(iil) If z and y are complements, then rk(x) + rk(y) = n.
(iv) All complements of x are incomparable.
(b) (transitivity of modularity) If x is a modular element of L and y is modular
in the interval [0, z], then y is a modular element of L.
(¢) If x and y are modular elements of L, then x Ay is also modular.

The next result, known as the modular element factorization theorem [16], is
our primary reason for defining modular elements — such an element induces a
factorization of the characteristic polynomial.

Theorem 4.13. Let z be a modular element of the geometric lattice L of rank n.
Write x(t) = X5, (t). Then

(32) xo(t) = x=(t) Z o, ()R ) Tk (2)

Y y/\z:O

Example 4.10. Before proceeding to the proof of Theorem 4.13, let us consider
an example. The illustration below is the affine diagram of a matroid M of rank
3, together with its lattice of flats. The two lines (flats of rank 2) labelled z and y
are modular by Example 4.9(c).
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Hence by equation (32) xas(t) is divisible by x.(¢t). Moreover, any atom a of
the interval [0, z] is modular, so x.(t) is divisible by xq(t) = t — 1. From this it
is immediate (e.g., because the characteristic polynomial y(t) of any geometric
lattice G of rank n begins 2" —ax™ 1+ - - where a is the number of atoms of G) that
Xz(t) = (t—=1)(t—=5) and xar(t) = (t—1)(t—3)(t—5). On the other hand, since y is
modular, x(¢) is divisible by x,(t), and we get as before x,(t) = (t—1)(t —3) and
xm(t) = (t—1)(t —3)(t — 5). Geometric lattices whose characteristic polynomial
factors into linear factors in a similar way due to a maximal chain of modular
elements are discussed further beginning with Definition 4.13.

Our proof of Theorem 4.13 will depend on the following lemma of Greene [11].
We give a somewhat simpler proof than Greene.

Lemma 4.5. Let L be a finite lattice with Mobius function u, and let z € L. The
following identity is valid in the Mobius algebra A(L) of L:

(33) o= ()= | Y pp > ulyy

z€L v<z yAz=0
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Proof. Let o5 for s € L be given by (8). The right-hand side of equation (33) is

then given by

> u)u(y) (v Vy)

v<z
yAz=0

> unly) Y o

v<z s>vVy
yNz=0

o

s v<s,v<z
y<s,yAz=0

p(v)pu(y)

ol D ou@ || D uw

s v<sAz y<s
N——— yAz=0
60,5/\2
> o > ()

sAz=0 . y<s
yAz=0 (redundant)
%,
gp-

O

Proof of Theorem 4.13. We are assuming that z is a modular element of

the geometric lattice L.

Claim 1. Let v < zand y Az =0 (sov Ay = 0). Then z A (vVy) = (as

illustrated below).

zvy

z Vvy
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Proof of Claim 1. Clearly z A (vVy) > v, so it suffices to show that rk(z A (vV
y)) < rk(v). Since z is modular we have

tk(zA(vVy)) = rk(z)+rk(vVy) —1k(zVy)
rk(z) + rk(v Vy) — (tk(2) + rk(y) — rk(z A y))
0

rk(v Vy) — rk(y)
(rk(v) + rk(y) — rk(v A y)) — rk(y) by semimodularity
—_——

IN

0

rk(v),
proving Claim 1.

Claim 2. With v and y as above, we have rk(v V y) = rk(v) + rk(y).

Proof of Claim 2. By the modularity of z we have

rk(z A (vVy))+1k(zV (v Vy)) =rk(z) + k(v V y).
By Claim 1 we have rk(z A (v V y)) = rk(v). Moreover, again by the modularity of
z we have
rk(z V (v Vy)) =1k(z Vy) =rk(z) + rk(y) — rk(z A y) = rk(z) + rk(y).

It follows that rk(v) + rk(y) = rk(v V y), as claimed.
Now substitute p(v)v — p(v)t™E %) and pu(y)y — py)t” @)= in the
right-hand side of equation (33). Then by Claim 2 we have

vy — tnfrk(v)frk(y) _ tnfrk(ny).

Now v V y is just vy in the Mobius algebra A(L). Hence if we further substi-
tute p(x)z — p(z)t" ¥ in the left-hand side of (33), then the product will be
preserved. We thus obtain

Z M(x)tnfrk(x) _ Zu(v)trk(z)frk(v) Z M(yﬁnfrk(y)frk(z)

zel v<z yAz=0

XL (t) Xz (t)
as desired. O

Corollary 4.8. Let L be a geometric lattice of rank n and a an atom of L. Then

Xo(t)=(t—1) Y py)y" W),
y/\a:f)
Proof. The atom a is modular (Example 4.9(b)), and x.(t) =t — 1. O
Corollary 4.8 provides a nice context for understanding the operation of coning
defined in Chapter 1, in particular, Exercise 2.1. Recall that if A is an affine
arrangement in K™ given by the equations

Ll(,’E) = a1y -, Lm(;y) = A,

then the cone xA is the arrangement in K" x K (where y denotes the last coordinate)
with equations

LI(I) =ay, ... 7Lm(x) =any, Y= 0.
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Let Hy denote the hyperplane y = 0. It is easy to see by elementary linear algebra
that

L(A) 2 L(cA) —{z € L(A) : 2 > Hy} = L(A) — L(A™).

Now Hy is a modular element of L(A) (since it’s an atom), so Corollary 4.8 yields

Xea(t) = (t—=1) Y p(y)tt D1k
yZHo

= (t—Dxal).

There is a left inverse to the operation of coning. Let A be a nonempty linear
arrangement in K"*1. Let Hy € A. Choose coordinates (zg,21,...,T,) in K"
so that Hy = ker(zg). Let A be defined by the equations

20 =0, L1(xo,...,2n) =0, ..., Ly(xo,...,2,) =0.
Define the deconing ¢c~1A (with respect to Hp) in K™ by the equations
Li(1,21,...,2,) =0, ... Ln(1,21,...,2,) =0.
Clearly c¢(c™*A) = A and L(c7'A) 2 L(A) — {x € L(A) : & > Hy}.

4.3. Supersolvable lattices

For some geometric lattices L, there are “enough” modular elements to give a
factorization of xr.(t) into linear factors.

Definition 4.13. A geometric lattice L is supersolvable if there exists a modular
maximal chain, i.e., a maximal chain 0= To<T1 < - <Xy = 1 such that each T;
is modular. A central arrangement A is supersolvable if its intersection lattice L 4
is supersolvable.

NOTE. Let 0 = To <Xy <o < Ty = 1 be a modular maximal chain of the
geometric lattice L. Clearly then each z;_; is a modular element of the interval
[0, ;]. The converse follows from Proposition 4.10(b): if 0 = zg <z < - <z, = 1
is a maximal chain for which each z;_; is modular in [0, z;], then each z; is modular
in L.

NoTE. The term “supersolvable” comes from group theory. A finite group I'
is supersolvable if and only if its subgroup lattice contains a maximal chain all of
whose elements are normal subgroups of I'. Normal subgroups are “nice” analogues
of modular elements; see [17, Example 2.5] for further details.

Corollary 4.9. Let L be a supersolvable geometric lattice of rank n, with modular
mazimal chain 0 = xg<z1 <---<x, = 1. Let T denote the set of atoms of L, and
set

(34) e, =#{aeT :a<zy afxi1}
Then xr(t) = (t—e1)(t —e2) - (t —en).
Proof. Since x,_1 is modular, we have

y/\$n71:0<:>y€Tandy£gjn,l, OI‘y:O,
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By Theorem 4.13 we therefore have

XL = Xay o (8) | D @)= M7k m) @) e Ok

acT
afLxn 1

Since p(a) = —1, p(0) = 1, tk(a) = 1, rk(0) = 0, and rk(z,_;) = n — 1, the
expression in brackets is just t —e,. Now continue this with L replaced by [O, Zp—1]

(or use induction on n). O
NoOTE. The positive integers ey, . .., e, of Corollary 4.9 are called the exponents

of L.

Example 4.11. (a) Let L = B, the boolean algebra of rank n. By Exam-

(b)

ple 4.9(d) every element of B,, is modular. Hence B, is supersolvable.
Clearly each e; = 1, so xp, (t) = (t — 1)".

Let L = By(q), the lattice of subspaces of F?. By Example 4.9(e) every
element of By (q) is modular, so By, (q) is supersolvable. If [%] denotes the
number of j-dimensional subspaces of a k-dimensional vector space over
Fg, then

e = -7
B qlfl qul 1
og-1 g-1
_ qi—1.

Hence

XBo(@(t) =t =1t —aq)t—¢*) - (t—q"").

In particular, setting ¢ = 0 gives

o (1) = (~1)7q(),

k] is called a g-binomial coefficient. It is a

NOTE. The expression [J
polynomial in ¢ with many interesting properties. For the most basic
properties, see e.g. [18, pp. 27-30].

Let L =TI, the lattice of partitions of the set [n] (a geometric lattice of
rank n — 1). By Proposition 4.9, a maximal chain of IT,, is modular if and
only if it has the form 0= Mo<mM <+ <TMp_1 = i, where 7; for ¢ > 0 has
exactly one nonsingleton block B; (necessarily with ¢ + 1 elements), with
By C By--- C Bp—1 = [n]. In particular, II,, is supersolvable and has
exactly n!/2 modular chains for n > 1. The atoms covered by 7; are the
partitions with one nonsingleton block {j,k} C B;. Hence m; lies above

exactly (”1) atoms, so

(1)

It follows that xm, (t) = (t — 1)(t — 2)---(t —n + 1) and pum, (1) =
(—=1)"~1(n — 1)!I. Compare Corollary 2.2. The polynomials xsg,, (¢) and
xi, (t) differ by a factor of ¢ because B, (t) is an arrangement in K™ of
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rank n — 1. In general, if A is an arrangement and ess(A) its essentializa-
tion, then

(35) trk(ess(A))XA (t) — trk(A)Xess(A)(t)-
(See Lecture 1, Exercise 2.)

NOTE. It is natural to ask whether there is a more general class of geometric
lattices L than the supersolvable ones for which x(¢) factors into linear factors
(over Z). There is a profound such generalization due to Terao [22] when L is an
intersection poset of a linear arrangement A in K. Write K[z] = KJz1,..., %]
and define

TA) ={(p1,...,pn) € K[z]" : pi(H) C H for all H € A}.
Here we are regarding (p1,...,pn) : K™ — K", viz., if (a1,...,a,) € K™, then

(p1s--ypn)(ar, .. an) = (pr(ar, ..., an), ..., pn(ar,. .., an)).
The K[z]-module structure K[z] x T(A) — T(A) is given explicitly by

q-(p1,---,0n) = (qp1,- -, qPn)-

Note, for instance, that we always have (z1,...,2,) € T(A). Since A is a linear
arrangement, J(A) is indeed a K[zr]-module. (We have given the most intuitive
definition of the module T(A), though it isn’t the most useful definition for proofs.)
It is easy to see that T(A) has rank n as a K[z]-module, i.e., T(A) contains n,
but not n + 1, elements that are linearly independent over K[z]. We say that A
is a free arrangement if T(A) is a free K[x]-module, i.e., there exist Q1,...,Q, €
T(A) such that every element @ € T(A) can be uniquely written in the form
Q= qQ1+ -+ guQn, where ¢; € K[z]. It is easy to see that if T(A) is free,
then the basis {Q1,...,Q,} can be chosen to be homogeneous, i.e., all coordinates
of each Q; are homogeneous polynomials of the same degree d;. We then write
d; = deg @Q;. It can be shown that supersolvable arrangements are free, but there
are also nonsupersolvable free arrangements. The property of freeness seems quite
subtle; indeed, it is unknown whether freeness is a matroidal property, i.e., depends
only on the intersection lattice L4 (regarding the ground field K as fixed). The
remarkable “factorization theorem” of Terao is the following.

Theorem 4.14. Suppose that T(A) is free with homogeneous basis Q1,...,Qn. If
deg Qz = dl then

xat) = (t = di)({t —da) - (t = dn).

We will not prove Theorem 4.14 here. A good reference for this subject is [13,
Ch. 4].

Returning to supersolvability, we can try to characterize the supersolvable prop-
erty for various classes of geometric lattices. Let us consider the case of the bond
lattice L of the graph G. A graph H with at least one edge is doubly connected if
it is connected and remains connected upon the removal of any vertex (and all in-
cident edges). A maximal doubly connected subgraph of a graph G is called a block
of G. For instance, if G is a forest then its blocks are its edges. Two different blocks
of GG intersect in at most one vertex. Figure 5 shows a graph with eight blocks, five
of which consist of a single edge. The following proposition is straightforward to
prove (Exercise 16).
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Figure 5. A graph with eight blocks

Proposition 4.11. Let G be a graph with blocks G1,...,Gk. Then
Lg=Lg, X+ %X Lg,.

It is also easy to see that if L1 and Ly are geometric lattices, then L; and
Lo are supersolvable if and only if L; x Lo is supersolvable (Exercise 18). Hence
in characterizing supersolvable graphs G (i.e., graphs whose bond lattice L¢g is
supersolvable) we may assume that G is doubly connected. Note that for any
connected (and hence a fortiori doubly connected) graph G, any coatom 7 of L¢
has exactly two blocks.

Proposition 4.12. Let G be a doubly connected graph, and let m = {A, B} be a
coatom of the bond lattice L, where #A < #B. Then 7 is a modular element of
L if and only if #A = 1, say A = {v}, and the neighborhood N(v) (the set of
vertices adjacent to v) forms a clique (i.e., any two distinct vertices of N(v) are
adjacent).

Proof. The proof parallels that of Proposition 4.9, which is a special case. Suppose
that #A > 1. Since G is doubly connected, there exist u,v € A and u’,v’ € B such
that u £ v, u’ # v, uwu’ € E(G), and vv’ € E(G). Set 0 = {(AUu')—v, (BUv)—u'}.
If G has n vertices then rk(r) = rk(c) = n—2, rk(nVo) = n—1, and rk(7Ao) = n—4.
Hence 7 is not modular.

Assume then that A = {v}. Suppose that av,bv € E(G) but ab ¢ E(G). We
need to show that 7 is not modular. Let o0 = {A — {a, b}, {a,b,v}}. Then

oVr=1, oAm={A-{a,b},a,b,v}
tk(o) =rk(r) =n -2, tk(ovm)=n—1, rk(c Am)=n—4.
Hence 7 is not modular.
Conversely, let 7 = {A,v}. Assume that if av,bv € E(G) then ab € E(G).
It is then straightforward to show (Exercise 8) that 7 is modular, completing the
proof. O

As an immediate consequence of Propositions 4.10(b) and 4.12 we obtain a
characterization of supersolvable graphs.

Corollary 4.10. A graph G is supersolvable if and only if there exists an ordering
V1,2,. .., Uy of its vertices such that if i <k, j < k, vjvy € E(G) and vju, € E(G),
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then v;v; € E(G). Equivalently, in the restriction of G to the vertices vi,va, ..., v;,
the neighborhood of v; is a clique.

NOTE. Supersolvable graphs G had appeared earlier in the literature under the
names chordal, rigid circuit, or triangulated graphs. One of their many characteri-
zations is that any circuit of length at least four contains a chord. Equivalently, no
induced subgraph of G is a k-cycle for k > 4.



