
LECTURE 4 
Broken circuits, modular elements, and supersolvability 

This lecture is concerned primarily with matroids and geometric lattices. Since 
the intersection lattice of a central arrangement is a geometric lattice, all our results 
can be applied to arrangements. 

4.1. Broken circuits 

For any geometric lattice L and x → y in L, we have seen (Theorem 3.10) that 
(−1)rk(x,y)µ(x, y) is a positive integer. It is thus natural to ask whether this integer 
has a direct combinatorial interpretation. To this end, let M be a matroid on the 
set S = {u1, . . . , u . Linearly order the elements of S, say u1 < u2 < < um.m} · · · 
Recall that a circuit of M is a minimal dependent subset of S. 

Definition 4.10. A broken circuit of M (with respect to the linear ordering O of 
S) is a set C − {u}, where C is a circuit and u is the largest element of C (in the 
ordering O). The broken circuit complex BCO(M) (or just BC(M) if no confusion 
will arise) is defined by 

BC(M) = {T ∗ S : T contains no broken circuit}. 
Figure 1 shows two linear orderings O and O� of the points of the affine matroid 

M of Figure 1 (where the ordering of the points is 1 < 2 < 3 < 4 < 5). With respect 
to the first ordering O the circuits are 123, 345, 1245, and the broken circuits are 
12, 34, 124. With respect to the second ordering O� the circuits are 123, 145, 2345, 
and the broken circuits are 12, 14, 234. 

It is clear that the broken circuit complex BC(M) is an abstract simplicial 
complex, i.e., if T ≤ BC(M) and U ∗ T , then U ≤ BC(M). In Figure 1 we 
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Figure 1. Two linear orderings of the matroid M of Figure 1 
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have BCO(M) = 135, 145, 235, 245 , while BCO� (M) = 135, 235, 245, 345 . These 
simplicial complexes have geometric realizations as follows: 
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Note that the two simplicial complexes BCO(M) and BCO� (M) are not iso­
morphic (as abstract simplicial complexes); in fact, their geometric realizations are 
not even homeomorphic. On the other hand, if fi(�) denotes the number of i-
dimensional faces (or faces of cardinality i − 1) of the abstract simplicial complex 
�, then for � given by either BCO(M) or BCO� (M) we have 

f−1(�) = 1, f0(�) = 5, f1(�) = 8, f2(�) = 4. 

Note, moreover, that 

ψM (t) = t3 − 5t2 + 8t− 4. 

In order to generalize this observation to arbitrary matroids, we need to introduce 
a fair amount of machinery, much of it of interest for its own sake. First we give 
a fundamental formula, known as Philip Hall’s theorem, for the Möbius function 

0, 1). value µ(ˆ ˆ

Lemma 4.4. Let P be a finite poset with ˆ 1, and with M¨0 and ˆ obius function µ. 
Let ci denote the number of chains 0̂ = y0 < y1 < i 1 in P . Then· · · < y = ˆ

µ(ˆ ˆ0, 1) = −c1 + c2 − c3 + .· · · 
Proof. We work in the incidence algebra I(P ). We have 

µ(ˆ ˆ −1(ˆ ˆ0, 1) = α 0, 1) 
ˆ= (ζ + (α − ζ))−1(0̂, 1) 

= ζ(ˆ ˆ 0, 1) + (α − ζ)2(ˆ0, 1) − (α − ζ)(ˆ ˆ 0, 1̂) − · · · . 
This expansion is easily justified since (α−ζ)k (ˆ ˆ

length less than k. By definition of the product in I(P ) we have (α − ζ)i(ˆ
0, 1) = 0 if the longest chain of P has 

ˆ0, 1) = ci,

and the proof follows. �


0 and ˆ 0, ˆ . Define
Note. Let P be a finite poset with ˆ 1, and let P � = P − {ˆ 1}
�(P �) to be the set of chains of P �, so �(P �) is an abstract simplicial complex. The 
reduced Euler characteristic of a simplicial complex � is defined by 

ψ̃(P ) = −f−1 + f0 − f1 + · · · , 
where fi is the number of i-dimensional faces F ≤ � (or #F = i+ 1). Comparing 
with Lemma 4.4 shows that 

µ(ˆ ˆ ψ0, 1) = ˜(�(P �)). 

Readers familiar with topology will know that ˜(�) has important topological sig-ψ
nificance related to the homology of �. It is thus natural to ask whether results 
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Figure 2. Three examples of edge-labelings 

concerning Möbius functions can be generalized or refined topologically. Such re­
sults are part of the subject of “topological combinatorics,” about which we will 
say a little more later. 

Now let P be a finite graded poset with ˆ 1. Let0 and ˆ

E(P ) = {(x, y) : x � y in P }, 
the set of (directed) edges of the Hasse diagram of P . 

Definition 4.11. An E-labeling of P is a map ϕ : E(P ) ∃ P such that if x < y in 
P then there exists a unique saturated chain 

C : x = x0 � x1 � x1 � � xk = y· · ·
satisfying 

ϕ(x0, x1) → ϕ(xk−1 , xk ).ϕ(x1, x2) → · · · → 

We call C the increasing chain from x to y. 

Figure 2 shows three examples of posets P with a labeling of their edges, i.e. 
a map ϕ : E(P ) ∃ P. Figure 2(a) is the boolean algebra B3 with the labeling 
ϕ(S, S ∅ {i}) = i. (The one-element subsets {i} are also labelled with a small 
i.) For any boolean algebra Bn, this labeling is the archetypal example of an E-
labeling. The unique increasing chain from S to T is obtained by adjoining to S 
the elements of T −S one at a time in increasing order. Figures 2(b) and (c) show 
two different E-labelings of the same poset P . These labelings have a number of 
different properties, e.g., the first has a chain whose edge labels are not all different, 
while every maximal chain label of Figure 2(c) is a permutation of {1, 2}. 
Theorem 4.11. Let ϕ be an E-labeling of P , and let x → y in P . Let µ denote 
the Möbius function of P . Then (−1)rk(x,y)µ(x, y) is equal to the number of strictly 
decreasing saturated chains from x to y, i.e., 

(−1)rk(x,y)µ(x, y) = 

#{x = x0 � x1 � � xk = y : ϕ(x0, x1) > ϕ(x1, x2) > > ϕ(xk−1 , xk )}.· · · · · · 
Proof. Since ϕ restricted to [x, y] (i.e., to E([x, y])) is an E-labeling, we can assume 
[x, y] = [ˆ ˆ0, 1] = P . Let S = {a1, a2, . . . , aj−1} ∗ [n − 1], with a1 < a2 < · · · < aj−1. 
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Define κP (S) to be the number of chains 0̂ < y1 < 1 in P such that · · · < yj−1 < ˆ

rk(yi) = ai for 1 → i → j − 1. The function κP is called the flag f -vector of P . 
0 = x0 � x1 � � xn = ˆClaim. κP (S) is the number of maximal chains ˆ	 1 such · · ·

that 

(27) ϕ(xi−1 , xi) > ϕ(xi , xi+1) ⊆ i ≤ S, 1 i n.→ → 

To prove the claim, let ˆ = y0 < y1 < < yj = 1 with rk(yi) = ai for0 · · · < yj−1 ˆ

1 → i → j − 1. By the definition of E-labeling, there exists a unique refinement 

0 = y0 = x0 � x1 � � xa1 = y1 � xa1 +1 � � xa2 = y2 � � xn = yj = ˆˆ	 1· · ·	 · · · · · ·
satisfying 

ϕ(x0, x1) → ϕ(xa1 −1, xa1 )ϕ(x1, x2) → · · · → 

ϕ(xa1 , xa1 +1) → ϕ(xa1 +1, x ϕ(xa2 −1, xa2 )a1 +2) → · · · → 

· · · 
Thus if ϕ(xi−1 , xi) > ϕ(xi , xi+1), then i ≤ S, so (27) is satisfied. Conversely, given 

0 = x0 � x1 � � xn = ˆa maximal chain ˆ	 1 satisfying the above conditions on ϕ,· · ·
let yi = xai . Therefore we have a bijection between the chains counted by κP (S) 
and the maximal chains satisfying (27), so the claim follows. 

Now for S ∗ [n− 1] define 

(28)	 λP (S) = 
� 

(−1)#(S−T )κP (T ). 
T →S 

The function λP is called the flag h-vector of P . A simple Inclusion-Exclusion 
argument gives 

(29)	 κP (S) = 
� 

λP (T ), 
T →S 

for all S ∗ [n−1]. It follows from the claim and equation (29) that λP (T ) is equal to 
0 = x0 � x1 � � xn = ˆthe number of maximal chains ˆ	 1 such that ϕ(xi ) > ϕ(xi+1 )· · ·

if and only if i ≤ T . In particular, λP ([n − 1]) is equal to the number of strictly 
0 = x0 � x1 � � xn = ˆdecreasing maximal chains ˆ	 1 of P , i.e., · · ·

ϕ(x0, x1) > ϕ(x1, x2) > > ϕ(xn−1, xn).· · · 
Now by (28) we have 

λP ([n− 1]) = 
� 

(−1)n−1−#T κP (T ) 
T →[n−1] 

= 
� � 

(−1)n−k 

k∗1 ˆ 10=y0 <y1 <···<yk =ˆ

= (−1)n 
�

(−1)k ck, 
k∗1 

where ci is the number of chains 0̂ = y0 < y1 < 1 in P . The proof now · · · < yi = ˆ

follows from Philip Hall’s theorem (Lemma 4.4).	 � 
We come to the main result of this subsection, a combinatorial interpretation 

of the coefficients of the characteristic polynomial ψM (t) for any matroid M . 
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Figure 3. The edge labeling �̃ of a geometric lattice L(M ) 

Theorem 4.12. Let M be a matroid of rank n with a linear ordering x1 < x2 < 
< xm of its points (so the broken circuit complex BC(M) is defined), and let · · · 

0 i n. Then→ → 
(−1)i[tn−i]ψM (t) = fi−1(BC(M)). 

Proof. We may assume M is simple since the “simplification” �M has the same 
lattice of flats and same broken circuit complex as M (Exercise 1). The atoms xi of 
L(M) can then be identified with the points of M . Define a labeling ϕ̃ : E(L(M)) ∃
P as follows. Let x� y in L(M). Then set 

˜(30) ϕ(x, y) = max{i : x ⇒ xi = y}. 
Note that ϕ̃(x, y) is defined since L(M) is atomic. 

As an example, Figure 3 shows the lattice of flats of the matroid M of Figure 1 
with the edge labeling (30). 

Claim 1. Define ϕ : E(L(M)) ∃ P by 

ϕ(x, y) = m+ 1 − ϕ̃(x, y). 

Then ϕ is an E-labeling. 
To prove this claim, we need to show that for all x < y in L(M) there is a 

unique saturated chain x = y0 � y1 � � yk = y satisfying· · ·
ϕ̃(y0, y1) ⊂ ˜ ϕ(yk−1, yk).ϕ(y1, y2) ⊂ · · · ⊂ ˜

The proof is by induction on k. There is nothing to prove for k = 1. Let k > 1 and 
assume the assertion for k − 1. Let 

j = max{i : xi → y, xi .⇔→ x}
For any saturated chain x = z0 � z1 � � zk = y, there is some i for which · · · 
xj ⇔→ zi and xj → zi+1. Hence ϕ̃(zi, zi+1) = j. Thus if ˜ ϕ(zk−1, zk),ϕ(z0, z1) ⊂ · · · ⊂ ˜

then ϕ̃(z0, z1) = j. Moreover, there is a unique y1 satisfying x = x0 � y1 → y and 
ϕ̃(x0, y1) = j, viz., y1 = x0 ⇒ xj . (Note that y1 � x0 by semimodularity.) 
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By the induction hypothesis there exists a unique saturated chain y1 � y2 � 
ϕ(y0, y1) = j > ˜� yk = y satisfying ˜ ϕ(yk−1, yk). Since ˜ ϕ(y1, y2),· · · ϕ(y1, y2) ⊂ · · · ⊂ ˜

the proof of Claim 1 follows by induction. 
Claim 2. The broken circuit complex BC(M) consists of all chain labels ϕ(C), 

where C is a saturated increasing chain (with respect to ˜ 0 to some x ≤ϕ) from ˆ

L(M). Moreover, all such ϕ(C) are distinct. 
To prove the distinctness of the labels ϕ(C), suppose that C is given by ˆ =0 

y0 � y1 � � yk, with ϕ̃(C) = (a1, a2, . . . , ak ). Then yi = yi−1 xai , so C is the · · · ⇒
only chain with its label. 

Now let C and ϕ̃(C) be as in the previous paragraph. We claim that the 
set {xa1 , . . . , xak } contains no broken circuit. (We don’t even require that C is 
increasing for this part of the proof.) Write zi = xai , and suppose to the contrary 
that B = {zi1 , . . . , zij } is a broken circuit, with 1 i1 < < ij → k. Let B∅{x→ · · · r }
be a circuit with r > ait for 1 → t → j. Now for any circuit {u1, . . . , uh} and any 
1 i h we have → → 

u1 uh = u1 ui+1⇒ u2 ⇒ · · · ⇒ ⇒ · · · ⇒ ui−1 ⇒ ⇒ · · · ⇒ uh. 

Thus 
zi1 zij−1

⇒ zi2 ⇒ · · · ⇒ ⇒ xr = 
� 

z = zi1 ⇒ zi2 ⇒ · · · ⇒ zij . 
z⊆B 

Then yij −1 ⇒ xr = yij , contradicting the maximality of the label aij . Hence 
a1 , . . . , xak } ≤ BC(M).{x

Conversely, suppose that T := {xa1 , . . . , xak } contains no broken circuit, with 
· · · a1 ⇒· · ·⇒ 0 := y0 � y1 � � yk.a1 < < ak . Let yi = x xai , and let C be the chain ˆ · · ·

(Note that C is saturated by semimodularity.) We claim that ϕ̃(C) = (a1, . . . , ak ). 
If not, then yi−1 ⇒ xj = yi for some j > ai. Thus 

rk(T ) = rk(T ∅ {xj }) = i. 

Since T is independent, T ∅ {xj } contains a circuit Q satisfying xj ≤ Q, so T 
contains a broken circuit. This contradiction completes the proof of Claim 2. 

To complete the proof of the theorem, note that we have shown that fi−1(BC(M)) 
0 = y0 � y1 � � yi such that ˜is the number of chains C : ˆ ϕ(C) is strictly increas-· · ·

ing, or equivalently, ϕ(C) is strictly decreasing. Since ϕ is an E-labeling, the proof 
follows from Theorem 4.11. � 

Corollary 4.6. The broken circuit complex BC(M) is pure, i.e., every maximal 
face has the same dimension. 

to be inserted. � 
Note (for readers with some knowledge of topology). (a) Let M be a matroid 

on the linearly ordered set u1 < u2 < < um. Note that F ≤ BC(M) if and only · · · 
m} ≤ BC(M). Define the reduced broken circuit complex BCr (M) by if F ∅ {u

BCr (M) = {F ≤ BC(M) : um .⇔≤ F}
Thus 

BC(M) = BCr(M) ∼ um, 

the join of BCr(M) and the vertex um. Equivalently, BC(M) is a cone over BCr (M) 
with apex um. As a consequence, BC(M) is contractible and therefore has the ho­
motopy type of a point. A more interesting problem is to determine the topological 
nature of BCr(M). It can be shown that BCr (M) has the homotopy type of a wedge 
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of λ(M ) spheres of dimension rank(M ) − 2, where (−1)rank(M )−1λ(M ) = ψ� 
M (1) 

(the derivative of ψM (t) at t = 1). See Exercise 21 for more information on λ(M ). 
(b) [to be inserted] 
As an example of the applicability of our results on matroids and geometric 

lattices to arrangements, we have the following purely combinatorial description of 
the number of regions of a real central arrangement. 

Corollary 4.7. Let A be a central arrangement in Rn, and let M be the matroid 
defined by the normals to H ≤ A, i.e., the independent sets of M are the linearly 
independent normals. Then with respect to any linear ordering of the points of M , 
r(A) is the total number of subsets of M that don’t contain a broken circuit. 

Proof. Immediate from Theorems 2.5 and 4.12.	 � 

4.2. Modular elements 

We next discuss a situation in which the characteristic polynomial ψM (t) factors in 
a nice way. 

Definition 4.12. An element x of a geometric lattice L is modular if for all y ≤ L 
we have 

(31) rk(x) + rk(y) = rk(x ∈ y) + rk(x ⇒ y). 

Example 4.9. Let L be a geometric lattice. 

(a)	 ˆ 1 are clearly modular (in any finite lattice). 0 and ˆ

(b) We claim that atoms a are modular. 

Proof. Suppose that a → y. Then a ∈ y = a and a = y, so equation ⇒ y 
(31) holds. (We don’t need that a is an atom for this case.) Now suppose 
a By semimodularity, rk(a ⇒ y) = 1 + rk(y), while rk(a) = 1 and ⇔→ y. 
rk(a ∈ y) = rk(0̂) = 0, so again (31) holds.	 � 

(c) Suppose that rk(L) = 3. All elements of rank 0, 1, or 3 are modular by 
(a) and (b). Suppose that rk(x) = 2. Then x is modular if and only if for 
all elements y = x and rk(y) = 2, we have that rk(x ∈ y) = 1. ⇔

(d) Let L = Bn. If x ≤ Bn then rk(x) = #x. Moreover, for any x, y ≤ Bn we 
have x ∈ y = x ⊕ y and x ⇒ y = x ∅ y. Since for any finite sets x and y we 
have 

#x + #y = #(x ⊕ y) + #(x ∅ y), 

it follows that every element of Bn is modular. In other words, Bn is a 
modular lattice. 

(e) Let	 q be a prime power and Fq the finite field with q elements. Define 
Bn(q) to be the lattice of subspaces, ordered by inclusion, of the vector 
space Fn . Note that Bn(q) is also isomorphic to the intersection lattice q 

of the arrangement of all linear hyperplanes in the vector space Fn(q). 
Figure 4 shows the Hasse diagrams of B2(3) and B3(2). 

Note that for x, y ≤ Bn(q) we have x ∈ y = x ⊕ y and x = x + y⇒ y 
(subspace sum). Clearly Bn(q) is atomic: every vector space is the join 
(sum) of its one-dimensional subspaces. Moreover, Bn(q) is graded of rank 
n, with rank function given by rk(x) = dim(x). Since for any subspaces 
x and y we have 

dim(x) + dim(y) = dim(x ⊕ y) + dim(x + y), 
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Figure 4. The lattices B2 (3) and B3 (2) 

it follows that L is a modular geometric lattice. Thus every x ≤ L is 
modular. 

Note. A projective plane R consists of a set (also denoted R) of 
points, and a collection of subsets of R, called lines, such that: (a) every 
two points lie on a unique line, (b) every two lines intersect in exactly one 
point, and (c) (non-degeneracy) there exist four points, no three of which 
are on a line. The incidence lattice L(R) of R is the set of all points 

0 and ˆand lines of R, ordered by p < L if p ≤ L, with ˆ 1 adjoined. It 
is an immediate consequence of the axioms that when R is finite, L(R) 
is a modular geometric lattice of rank 3. It is an open (and probably 
intractable) problem to classify all finite projective planes. Now let P and 
Q be posets and define their direct product (or cartesian product ) to be 
the set 

P × Q = {(x, y) : x ≤ P, y ≤ Q}, 
ordered componentwise, i.e., (x, y) → (x , y�) if x → x� and y → y . It is easy 
to see that if P and Q are geometric (respectively, atomic, semimodular, 
modular) lattices, then so is P × Q (Exercise 7). It is a consequence of the 
“fundamental theorem of projective geometry” that every finite modular 
geometric lattice is a direct product of boolean algebras Bn, subspace 
lattices Bn(q) for n ⊂ 3, lattices of rank 2 with at least five elements 
(which may be regarded as B2(q) for any q ⊂ 2) and incidence lattices of 
finite projective planes. 

(f) The following result characterizes the modular elements of Γn, which is 
the lattice of partitions of [n] or the intersection lattice of the braid ar­
rangement Bn. 

Proposition 4.9. A partition β ≤ Γn is a modular element of Γn if 
and only if β has at most one nonsingleton block. Hence the number of 
modular elements of Γn is 2n − n. 

Proof. If all blocks of β are singletons, then β = 0̂, which is modular by 
(a). Assume that β has the block A with r > 1 elements, and all other 
blocks are singletons. Hence the number β of blocks of β is given by | | 
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n− r + 1. For any π ≤ Γn, we have rk(π) = n− π . Let k = π and| | | | 

j = #{B ≤ π : A ⊕ B = ⇔ �}. 

Then β ∈ π = j + (n− r) and β π = k − j + 1. Hence rk(β) = r − 1,| |	 | ⇒ |
rk(π) = n− k, rk(β ∈ π) = r − j, and rk(β ⇒ π) = n − k + j − 1, so β is 
modular. 

Conversely, let β = {B1, B2, . . . , Bk} with #B1 > 1 and #B2 > 1. 
Let a ≤ B1 and b ≤ B2, and set 

π = {(B1 ∅ b) − a, (B2 ∅ a) − b, B3, . . . , Bk }. 

Then 

|β| = π = k
| |


β ∈ π = {a, b, B1 − a,B2 − b, . . . , B3, . . . , Bk} β ∈ π = k + 2
⊆ | | 
β ⇒ π = {B1 ∅ B2, B3, . . . , Bl} |β π = k − 1.⊆ ⇒ | 

Hence rk(β) + rk(π) = rk(β ∈ π) + rk(β π), so β is not modular. �⇔	 ⇒ 

In a finite lattice L, a complement of x ≤ L is an element y ≤ L such that 
0 and x⇒ y = ˆx∈ y = ˆ 1. For instance, in the boolean algebra Bn every element has 

a unique complement. (See Exercise 3 for the converse.) The following proposition 
collects some useful properties of modular elements. The proof is left as an exercise 
(Exercises 4–5). 

Proposition 4.10. Let L be a geometric lattice of rank n. 

(a)	 Let x ≤ L. The following four conditions are equivalent. 
(i)	 x is a modular element of L. 
(ii)	 If x ∈ y = 0̂, then rk(x) + rk(y) = rk(x ⇒ y). 
(iii)	 If x and y are complements, then rk(x) + rk(y) = n. 
(iv)	 All complements of x are incomparable. 

(b)	 (transitivity of modularity) If x is a modular element of L and y is modular 
in the interval [0̂, x], then y is a modular element of L. 

(c)	 If x and y are modular elements of L, then x ∈ y is also modular. 

The next result, known as the modular element factorization theorem [16], is 
our primary reason for defining modular elements — such an element induces a 
factorization of the characteristic polynomial. 

Theorem 4.13. Let z be a modular element of the geometric lattice L of rank n. 
Write ψz (t) = ψ[ˆ Then0,z](t). 

�	 ⎟ 

(32) ψL(t) = ψz (t) ⎞
� 

µL(y)tn−rk(y)−rk(z)⎠ . 
y : y≥z=0̂ 

Example 4.10. Before proceeding to the proof of Theorem 4.13, let us consider 
an example. The illustration below is the affine diagram of a matroid M of rank 
3, together with its lattice of flats. The two lines (flats of rank 2) labelled x and y 
are modular by Example 4.9(c). 
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y
x

x y

Hence by equation (32) ψM (t) is divisible by ψx(t). Moreover, any atom a of

the interval [0̂, x] is modular, so ψx(t) is divisible by ψa(t) = t − 1. From this it
is immediate (e.g., because the characteristic polynomial ψG(t) of any geometric
latticeG of rank n begins xn−axn−1+· · · , where a is the number of atoms ofG) that
ψx(t) = (t−1)(t−5) and ψM (t) = (t−1)(t−3)(t−5). On the other hand, since y is
modular, ψM (t) is divisible by ψy(t), and we get as before ψy(t) = (t−1)(t−3) and
ψM (t) = (t − 1)(t − 3)(t − 5). Geometric lattices whose characteristic polynomial
factors into linear factors in a similar way due to a maximal chain of modular
elements are discussed further beginning with Definition 4.13.

Our proof of Theorem 4.13 will depend on the following lemma of Greene [11].
We give a somewhat simpler proof than Greene.

Lemma 4.5. Let L be a finite lattice with Möbius function µ, and let z ≤ L. The
following identity is valid in the Möbius algebra A(L) of L:

(33) π0̂ :=
�

x⊆L

µ(x)x =

⎤
��

v⊇z

µ(v)v

�
⎢
⎤
� �

y≥z=0̂

µ(y)y

�
⎢ .
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Proof. Let πs for s ≤ L be given by (8). The right-hand side of equation (33) is 
then given by 

µ(v)µ(y)(v ⇒ y) = µ(v)µ(y) 
� 

πs 

v⊇z v⊇z s∗v∞y 
y≥z=ˆ y≥z=ˆ0 0 

πs µ(v)µ(y)= 
s v⊇s,v⊇z 

y⊇s,y≥z=0̂ �
⎡⎡

⎤
⎥⎥

⎤
⎥⎥

�
⎡⎡⎥

⎥⎥�v⊇s≥z 

⎡⎡πs µ(v) µ(y)= ⎢⎡⎢ y⊇ss 
y≥z=0̂ 

0̂,s�z �
⎡⎡⎡⎡

⎤
⎥⎥⎥⎥
⎥⎥ ⎡⎡πs µ(y)= 
⎥⎥ ⎡⎡y⊇ss≥z=0̂ 

y≥z=0̂ (redundant) ⎢ 

0̂,s 

= π0̂. 

Proof of Theorem 4.13. We are assuming that z is a modular element of 
the geometric lattice L. 

ˆ ˆClaim 1. Let v → z and y ∈ z = 0 (so v ∈ y = 0). Then z ∈ (v ⇒ y) = v (as 
illustrated below). 

y 

z y 

z 

v 

0 

v 

v yv 
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Proof of Claim 1. Clearly z ∈ (v ⇒ y) ⊂ v, so it suffices to show that rk(z ∈ (v ⇒ 
y)) → rk(v). Since z is modular we have 

rk(z ∈ (v ⇒ y)) = rk(z) + rk(v ⇒ y) − rk(z ⇒ y) 

= rk(z) + rk(v ⇒ y) − (rk(z) + rk(y) − rk(z ∈ y)) 

0 

= rk(v ⇒ y) − rk(y) 

→ (rk(v) + rk(y) − rk(v ∈ y) 

0 

) − rk(y) by semimodularity 

= rk(v), 

proving Claim 1. 
Claim 2. With v and y as above, we have rk(v ⇒ y) = rk(v) + rk(y). 
Proof of Claim 2. By the modularity of z we have 

rk(z ∈ (v ⇒ y)) + rk(z ⇒ (v ⇒ y)) = rk(z) + rk(v ⇒ y). 

By Claim 1 we have rk(z ∈ (v ⇒ y)) = rk(v). Moreover, again by the modularity of 
z we have 

rk(z ⇒ (v ⇒ y)) = rk(z ⇒ y) = rk(z) + rk(y) − rk(z ∈ y) = rk(z) + rk(y). 

It follows that rk(v) + rk(y) = rk(v ⇒ y), as claimed. 
Now substitute µ(v)v ∃ µ(v)trk(z)−rk(v) and µ(y)y ∃ µ(y)tn−rk(y)−rk(z) in the 

right-hand side of equation (33). Then by Claim 2 we have 

vy ∃ tn−rk(v)−rk(y) n−rk(v∞y)= t . 

Now v ⇒ y is just vy in the Möbius algebra A(L). Hence if we further substi­
tute µ(x)x ∃ µ(x)tn−rk(x) in the left-hand side of (33), then the product will be 
preserved. We thus obtain 

�
⎡⎡

⎤
⎥⎥

⎤
� n−rk(y)−rk(z) 

�
⎢ ,

⎥⎥⎥
⎡⎡⎡⎢ 

n−rk(x) µ(v)trk(z)−rk(v)µ(x)t µ(y)t= 
x⊆L v⊇z y≥z=0̂ 

�L (t) �z (t) 

as desired. � 

Corollary 4.8. Let L be a geometric lattice of rank n and a an atom of L. Then 

ψL(t) = (t− 1) 
� 

µ(y)tn−1−rk(y). 
y≥a=0̂ 

Proof. The atom a is modular (Example 4.9(b)), and ψa(t) = t− 1. � 
Corollary 4.8 provides a nice context for understanding the operation of coning 

defined in Chapter 1, in particular, Exercise 2.1. Recall that if A is an affine 
arrangement in Kn given by the equations 

L1(x) = a1, . . . , Lm(x) = am, 

then the cone xA is the arrangement in Kn ×K (where y denotes the last coordinate) 
with equations 

L1(x) = a1y, . . . , Lm(x) = amy, y = 0. 
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Let H0 denote the hyperplane y = 0. It is easy to see by elementary linear algebra 
that 

L(A) ∪= L(cA) − {x ≤ L(A) : x ⊂ H0} = L(A) − L(AH0 ). 

Now H0 is a modular element of L(A) (since it’s an atom), so Corollary 4.8 yields 

µ(y)t(n+1)−1−rk(y)ψcA(t) = (t− 1) 
� 

y ∈∗H0 

= (t− 1)ψA(t). 

There is a left inverse to the operation of coning. Let A be a nonempty linear 
arrangement in Kn+1 . Let H0 ≤ A. Choose coordinates (x0, x1, . . . , xn) in Kn+1 

so that H0 = ker(x0). Let A be defined by the equations 

x0 = 0, L1(x0, . . . , xn) = 0, . . . , Lm(x0, . . . , xn) = 0. 

Define the deconing c−1A (with respect to H0) in Kn by the equations 

L1(1, x1, . . . , xn) = 0, . . . Lm(1, x1, . . . , xn) = 0. 

Clearly c(c−1A) = A and L(c−1A) ∪= L(A) − {x ≤ L(A) : x ⊂ H0}. 

4.3. Supersolvable lattices 

For some geometric lattices L, there are “enough” modular elements to give a 
factorization of ψL(t) into linear factors. 

Definition 4.13. A geometric lattice L is supersolvable if there exists a modular 
0 = x0 � x1 � � xn = ˆmaximal chain, i.e., a maximal chain ˆ 1 such that each xi· · ·

is modular. A central arrangement A is supersolvable if its intersection lattice LA 

is supersolvable. 

0 ˆNote. Let ˆ = x0 � x1 � � xn = 1 be a modular maximal chain of the · · · 
geometric lattice L. Clearly then each xi−1 is a modular element of the interval 
0, xi]. The converse follows from Proposition 4.10(b): if ˆ 1[ˆ 0 = x0 � x1 � � xn = ˆ· · ·
is a maximal chain for which each xi−1 is modular in [0̂, xi], then each xi is modular 
in L. 

Note. The term “supersolvable” comes from group theory. A finite group � 
is supersolvable if and only if its subgroup lattice contains a maximal chain all of 
whose elements are normal subgroups of �. Normal subgroups are “nice” analogues 
of modular elements; see [17, Example 2.5] for further details. 

Corollary 4.9. Let L be a supersolvable geometric lattice of rank n, with modular 
0 = x0 � x1 � � xn = ˆmaximal chain ˆ 1. Let T denote the set of atoms of L, and · · ·

set 

(34) ei = #{a ≤ T : a → xi, a .⇔→ xi−1}

Then ψL(t) = (t− e1)(t− e2) · · · (t− en). 

Proof. Since xn−1 is modular, we have 

0 √ y ≤ T and y ⇔→ xn−1, or y = ˆy ∈ xn−1 = ˆ 0. 
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By Theorem 4.13 we therefore have 
� ⎟ 

n−rk(a)−rk(xn−1 ) + µ(ˆ 0)−rk(xn−1)⎝ 0)tn−rk(ˆψL(t) = ψxn−1 (t) 
⎝ � 

µ(a)t
⎣
.⎣⎞ 

a⊆T 
⎠ 

a∈⊇xn−1 

0) = 1, rk(a) = 1, rk(ˆSince µ(a) = −1, µ(ˆ 0) = 0, and rk(xn−1) = n − 1, the 
expression in brackets is just t−en. Now continue this with L replaced by [0̂, xn−1]

(or use induction on n). �


Note. The positive integers e1, . . . , en of Corollary 4.9 are called the exponents

of L. 

Example 4.11. (a) Let L = Bn, the boolean algebra of rank n. By Exam­
ple 4.9(d) every element of Bn is modular. Hence Bn is supersolvable. 
Clearly each ei = 1, so ψBn (t) = (t− 1)n . 

(b) Let L = Bn(q), the lattice of subspaces of Fq . By Example 4.9(e) every n

element of Bn(q) is modular, so Bn(q) is supersolvable. If 
�
k
� 

denotes the j 

number of j-dimensional subspaces of a k-dimensional vector space over 
Fq , then 

ei = [i 1] − [i−1]1 

iq − 1 qi−1 − 1 
= 

q − 1 
− 

q − 1 

i−1 = q . 

Hence 

ψBn (q)(t) = (t− 1)(t− q)(t− q 2 ).) · · · (t− q n−1

In particular, setting t = 0 gives 

q(
n 

1) = (−1)n 
2 ).µBn (q)(ˆ

Note. The expression 
�
k
� 

is called a q-binomial coefficient. It is a j 

polynomial in q with many interesting properties. For the most basic 
properties, see e.g. [18, pp. 27–30]. 

(c) Let L = Γn, the lattice of partitions of the set [n] (a geometric lattice of 
rank n− 1). By Proposition 4.9, a maximal chain of Γn is modular if and 

0 = β0 � β1 � � βn−1 = ˆonly if it has the form ˆ 1, where βi for i > 0 has · · ·
exactly one nonsingleton block Bi (necessarily with i+ 1 elements), with 
B1 n−1 = [n]. In particular, Γn is supersolvable and has ⊇ B2 · · · ⊇ B
exactly n!/2 modular chains for n > 1. The atoms covered by βi are the 
partitions with one nonsingleton block {j, k} ∗ Bi. Hence βi lies above 
exactly 

⎜
i+1
� 

atoms, so 2 
�
i+ 1 

� �
i
� 

ei = − 
2

= i. 
2 

It follows that ψ�n (t) = (t − 1)(t − 2) · · · (t − n + 1) and µ�n (1̂) = 
(−1)n−1(n − 1)!. Compare Corollary 2.2. The polynomials ψBn (t) and 
ψ�n (t) differ by a factor of t because Bn(t) is an arrangement in Kn of 
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rank n− 1. In general, if A is an arrangement and ess(A) its essentializa­
tion, then 

trk(ess(A))ψA(t) = trk(A)ψess(A)(t).(35) 

(See Lecture 1, Exercise 2.) 

Note. It is natural to ask whether there is a more general class of geometric 
lattices L than the supersolvable ones for which ψL(t) factors into linear factors 
(over Z). There is a profound such generalization due to Terao [22] when L is an 
intersection poset of a linear arrangement A in Kn . Write K[x] = K[x1, . . . , xn] 
and define 

T(A) = {(p1, . . . , pn) ≤ K[x]n : pi(H) ∗ H for all H ≤ A}. 
Here we are regarding (p1, . . . , pn) : Kn ∃ Kn, viz., if (a1, . . . , an) ≤ Kn, then 

(p1, . . . , pn)(a1, . . . , an) = (p1(a1, . . . , an), . . . , pn(a1, . . . , an)). 

The K[x]-module structure K[x] × T(A) ∃ T(A) is given explicitly by 

q · (p1, . . . , pn) = (qp1, . . . , qpn). 

Note, for instance, that we always have (x1, . . . , xn) ≤ T(A). Since A is a linear 
arrangement, T(A) is indeed a K[x]-module. (We have given the most intuitive 
definition of the module T(A), though it isn’t the most useful definition for proofs.) 
It is easy to see that T(A) has rank n as a K[x]-module, i.e., T(A) contains n, 
but not n + 1, elements that are linearly independent over K[x]. We say that A 
is a free arrangement if T(A) is a free K[x]-module, i.e., there exist Q1, . . . , Qn ≤
T(A) such that every element Q ≤ T(A) can be uniquely written in the form 
Q = q1Q1 + + qnQn, where qi ≤ K[x]. It is easy to see that if T(A) is free, · · · 
then the basis {Q1, . . . , Qn} can be chosen to be homogeneous, i.e., all coordinates 
of each Qi are homogeneous polynomials of the same degree di. We then write 
di = deg Qi. It can be shown that supersolvable arrangements are free, but there 
are also nonsupersolvable free arrangements. The property of freeness seems quite 
subtle; indeed, it is unknown whether freeness is a matroidal property, i.e., depends 
only on the intersection lattice LA (regarding the ground field K as fixed). The 
remarkable “factorization theorem” of Terao is the following. 

Theorem 4.14. Suppose that T(A) is free with homogeneous basis Q1, . . . , Qn. If 
deg Qi = di then 

ψA(t) = (t− d1)(t− d2) · · · (t− dn). 

We will not prove Theorem 4.14 here. A good reference for this subject is [13, 
Ch. 4]. 

Returning to supersolvability, we can try to characterize the supersolvable prop­
erty for various classes of geometric lattices. Let us consider the case of the bond 
lattice LG of the graph G. A graph H with at least one edge is doubly connected if 
it is connected and remains connected upon the removal of any vertex (and all in­
cident edges). A maximal doubly connected subgraph of a graph G is called a block 
of G. For instance, if G is a forest then its blocks are its edges. Two different blocks 
of G intersect in at most one vertex. Figure 5 shows a graph with eight blocks, five 
of which consist of a single edge. The following proposition is straightforward to 
prove (Exercise 16). 
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Figure 5. A graph with eight blocks 

Proposition 4.11. Let G be a graph with blocks G1, . . . , Gk . Then 

.LG 
∪= LG1 × · · · × LGk 

It is also easy to see that if L1 and L2 are geometric lattices, then L1 and 
L2 are supersolvable if and only if L1 × L2 is supersolvable (Exercise 18). Hence 
in characterizing supersolvable graphs G (i.e., graphs whose bond lattice LG is 
supersolvable) we may assume that G is doubly connected. Note that for any 
connected (and hence a fortiori doubly connected) graph G, any coatom β of LG 

has exactly two blocks. 

Proposition 4.12. Let G be a doubly connected graph, and let β = {A,B} be a 
coatom of the bond lattice LG, where #A #B. Then β is a modular element of →
LG if and only if #A = 1, say A = {v}, and the neighborhood N(v) (the set of 
vertices adjacent to v) forms a clique (i.e., any two distinct vertices of N(v) are 
adjacent). 

Proof. The proof parallels that of Proposition 4.9, which is a special case. Suppose 
that #A > 1. Since G is doubly connected, there exist u, v ≤ A and u�, v ≤ B such 
that u = v, u� = v , uu ≤ E(G), and vv� ≤ E(G). Set π = {(A∅u�)−v, (B∅v)−u .⇔ ⇔ }
If G has n vertices then rk(β) = rk(π) = n−2, rk(β π) = n−1, and rk(β∈π) = n−4.⇒
Hence β is not modular. 

{v}Assume then that A = . Suppose that av, bv ≤ E(G) but ab ⇔≤ E(G). We 
need to show that β is not modular. Let π = {A− {a, b}, {a, b, v}}. Then 

π β = ˆ⇒ 1, π ∈ β = {A− {a, b}, a, b, v} 

rk(π) = rk(β) = n− 2, rk(π ⇒ β) = n− 1, rk(π ∈ β) = n− 4. 

Hence β is not modular. 
Conversely, let β = {A, v}. Assume that if av, bv ≤ E(G) then ab ≤ E(G). 

It is then straightforward to show (Exercise 8) that β is modular, completing the 
proof. � 

As an immediate consequence of Propositions 4.10(b) and 4.12 we obtain a 
characterization of supersolvable graphs. 

Corollary 4.10. A graph G is supersolvable if and only if there exists an ordering 
v1, v2, . . . , vn of its vertices such that if i < k, j < k, vivk ≤ E(G) and vj vk ≤ E(G), 
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then vivj ≤ E(G). Equivalently, in the restriction of G to the vertices v1, v2, . . . , vi, 
the neighborhood of vi is a clique. 

Note. Supersolvable graphs G had appeared earlier in the literature under the 
names chordal, rigid circuit, or triangulated graphs. One of their many characteri­
zations is that any circuit of length at least four contains a chord. Equivalently, no 
induced subgraph of G is a k-cycle for k ⊂ 4. 


