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8 A glimpse of Young tableaux. 

We defined in Section 6 Young’s lattice Y , the poset of all partitions of all 
nonnegative integers, ordered by containment of their Young diagrams. 
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Young’s lattice 

Here we will be concerned with the counting of certain walks in the Hasse 
diagram (considered as a graph) of Y . Note that since Y is infinite, we cannot 
talk about its eigenvalues and eigenvectors. We need different techniques for 
counting walks. (It will be convenient to denote the length of a walk by n, 
rather than by φ as in previous sections.) 

Note that Y is a graded poset (of infinite rank), with Yi consisting of all 
partitions of i. In other words, we have Y = Y0 ≤ Y1 ≤ · · · (disjoint union), 
where every maximal chain intersects each level Yi exactly once. We call Yi 

the ith level of Y . 

Since the Hasse diagram of Y is a simple graph (no loops or multiple 
edges), a walk of length n is specified by a sequence �0 , �1 , . . . , �n of vertices 
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of Y . We will call a walk in the Hasse diagram of a poset a Hasse walk. 
Each �i is a partition of some integer, and we have either (a) �i < �i+1 

and �i = �i+1 − 1, or (b) �i > �i+1 and �i = |�i+1 + 1. A step of | | | | | | |
type (a) is denoted by U (for “up,” since we move up in the Hasse di­
agram), while a step of type (b) is denoted by D (for “down”). If the 
walk W has steps of types A1, A2, . . . , An, respectively, where each Ai is 
either U or D, then we say that W is of type AnA Noten−1 · · ·A2A1. 
that the type of a walk is written in the opposite order to that of the 
walk. This is because we will soon regard U and D as linear transfor­
mations, and we multiply linear transformations right-to-left (opposite to 
the usual left-to-right reading order). For instance (abbreviating a partition 
(�1, . . . , �m) as �1 · · ·�m), the walk Ø, 1, 2, 1, 11, 111, 211, 221, 22, 21, 31, 41 is 
of type UUDDUUUUDUU = U 2D2U4DU2 . 

There is a nice combinatorial interpretation of walks of type Un which 
begin at Ø. Such walks are of course just saturated chains Ø = �0 < �1 < 

n< � . In other words, they may be regarded as sequences of Young · · · 
diagrams, beginning with the empty diagram and adding one new square at 
each step. An example of a walk of type U 5 is given by 

Ø 

We can specify this walk by taking the final diagram and inserting an i into 
square s if s was added at the ith step. Thus the above walk is encoded by 
the “tableau” 

1 2 

3 5 

4 

Such an object θ is called a standard Young tableaux (or SYT). It consists 
of the Young diagram D of some partition � of an integer n, together with 
the numbers 1, 2, . . . , n inserted into the squares of D, so that each number 
appears exactly once, and every row and column is increasing. We call � the 
shape of the SYT θ , denoted � = sh(θ). For instance, there are five SYT of 
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shape (2, 2, 1), given by 

1 2 1 2 1 3 1 3 1 4 

3 4 3 5 2 4 2 5 2 5 

5 4 5 4 3 

Let f� denote the number of SYT of shape �, so for instance f (2,2,1) = 5. 
The numbers f� have many interesting properties; for instance, there is a 
famous explicit formula for them known as the Frame-Robinson-Thrall hook 
formula. We will be concerned with their connection to counting walks in 
Young’s lattice. If w = An A1 is some word in U and D and � √ n,An−1 · · ·
then let us write �(w, �) for the number of Hasse walks in Y of type w which 
start at the empty partition Ø and end at �. For instance, �(UDUU, 11) = 
2, the corresponding walks being Ø, 1, 2, 1, 11 and Ø, 1, 11, 1, 11. Thus in 
particular �(Un, �) = f� [why?]. In a similar fashion, since the number of 
Hasse walks of type DnUn which begin at Ø, go up to a partition � √ n, and 
then back down to Ø is given by (f�)2, we have 

�(DnUn ,Ø) = (f�)2 . (40) 
��n 

Our object is to find an explicit formula for �(w, �) of the form f �cw , 
where cw does not depend on �. (It is by no means a priori obvious that 

such a formula should exist.) In particular, since fØ = 1, we will obtain by 
setting � = Ø a simple formula for the number of (closed) Hasse walks of 
type w from Ø to Ø (thus including a simple formula for (40)). 

There is an easy condition for the existence of any Hasse walks of type 
w from Ø to �, given by the next lemma. 

8.1 Lemma. Suppose w = Dsk U rk Ds2 U r2 Ds1 U r1 , where ri ≡ 0 and· · ·
si ≡ 0. Let � √ n. Then there exists a Hasse walk of type w from Ø to � if 
and only if: 

k 

(ri − si) = n 
i=1 

74




� 

� 

�<µ 
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j 

(ri − si) ≡ 0 for 1 � j � k. 
i=1 

Proof. Since each U moves up one level and each D moves down one 
level, we see that 

�k

i=1(ri −si) is the level at which a walk of type w beginning 
at Ø ends. Hence 

�k

i=1(ri − si) = � = n.| | 
�jAfter 

�j

i=1(ri +si) steps we will be at level i=1(ri −si). Since the lowest 
level is level 0, we must have 

�j

i=1(ri − si) ≡ 0 for 1 � j � k. 

The easy proof that the two conditions of the lemma are sufficient for 
the existence of a Hasse walk of type w from Ø to � is left to the reader. � 

If w is a word in U and D satisfying the conditions of Lemma 8.1, then 
we say that w is a valid �-word. (Note that the condition of being a valid 
�-word depends only on � .)| |

U

The proof of our formula for �(w, �) will be based on linear transforma­
tions analogous to those defined by (18) and (19). As in Section 4 let RYj 

be the real vector space with basis Yj . Define two linear transformations 
i : RYi � RYi+1 and Di : RYi � RYi−1 by 

Ui(�) = µ 
µ�i+1 

Di(�) = �, 
��i−1 
�<� 

for all � √ i. For instance (using abbreviated notation for partitions) 

U21(54422211) = 64422211 + 55422211 + 54432211 + 54422221 + 544222111 

D21(54422211) = 44422211 + 54322211 + 54422111 + 5442221. 

It is clear [why?] that if r is the number of distinct (i.e., unequal) parts of �, 
then Ui(�) is a sum of r + 1 terms and Di(�) is a sum of r terms. The next 
lemma is an analogue for Y of the corresponding result for Bn (Lemma 4.6). 
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8.2 Lemma. For any i ≡ 0 we have 

Di+1Ui − Ui−1Di = Ii, (41) 

the identity linear transformation on RYi. 

Proof. Apply the left-hand side of (41) to a partition � of i, expand 
in terms of the basis Yi, and consider the coefficient of a partition µ. If 
µ = � and µ can be obtained from � by adding one square s to (the Young ∪
diagram of) � and then removing a (necessarily different) square t, then there 
is exactly one choice of s and t. Hence the coefficient of µ in Di+1Ui(�) is 
equal to 1. But then there is exactly one way to remove a square from � and 
then add a square to get µ, namely, remove t and add s. Hence the coefficient 
of µ in Ui−1Di(�) is also 1, so the coefficient of µ when the left-hand side of 
(41) is applied to � is 0. 

If now µ = � and we cannot obtain µ by adding a square and then deleting ∪
a square from � (i.e., µ and � differ in more than two rows), then clearly 
when we apply the left-hand side of (41) to �, the coefficient of µ will be 0. 

Finally consider the case � = µ. Let r be the number of distinct (unequal) 
parts of �. Then the coefficient of � in Di+1Ui(�) is r+1, while the coefficient 
of � in Ui−1Di(�) is r, since there are r + 1 ways to add a square to � and 
then remove it, while there are r ways to remove a square and then add it 
back in. Hence when we apply the left-hand side of (41) to �, the coefficient 
of � is equal to 1. 

Combining the conclusions of the three cases just considered shows that 
the left-hand side of (41) is just Ii, as was to be proved. � 

We come to one of the main results of this section. 

8.3 Theorem. Let � be a partition and w = An A1 a valid An−1 · · ·
�-word. Let Sw = {i : Ai = D}. For each i ⊕ Sw , let ai be the number of D’s 
in w to the right of Ai, and let bi be the number of U ’s in w to the right of 
Ai. Then 

�(w, �) = f� (bi − ai). (42) 
i�Sw 
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Before proving Theorem 8.3, let us give an example. Suppose w = 
U3D2U2DU3 = UUUDDUUDUUU and � = (2, 2, 1). Then Sw = {4, 7, 8}
and a4 = 0, b4 = 3, a7 = 1, b7 = 5, a8 = 2, b8 = 5. We have also seen earlier 
that f 221 = 5. Thus 

�(w, �) = 5(3 − 0)(5 − 1)(5 − 2) = 180. 

Proof of Theorem 8.3. Write [�]f for the coefficient of � in f ⊕
RYi. We illustrate the proof for the special case w = DU λ DU� DU�, where 
�, λ, β ≡ 0, from which the general case will be clear. By the definition of w 
we have 

�(w, �) = [�]w(Ø) 

= [�]DUλ DU� DU�(Ø). 

We will use the identity (easily proved by induction on i) 

DU i = U iD + iU i−1 . (43) 

Thus 

w(Ø) = DUλ DU� DU�(Ø) 

= DUλ DU� (U�D + �U�−1)(Ø) 

= �DUλ DU�+�−1(Ø), 

since D(Ø) = 0. Continuing, we obtain 

w(Ø) = �DUλ (U�+�−1D + (� + λ − 1)U�+�−2)(Ø) 

= �(� + λ − 1)DU�+�+λ−2(Ø) 

= �(� + λ − 1)(U�+�+λ−2D + (� + λ + β − 2)U�+�+λ−3)(Ø) 

= �(� + λ − 1)(� + λ + β − 2)U�+�+λ−3(Ø). 

The coefficient of � in U�+�+λ−3(Ø) is f�, so we get 

[�]DUλ DU� DU�(Ø) = �(� + λ − 1)(� + λ + β − 2)f� , 

which is equivalent to (42). � 
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An interesting special case of the previous theorem allows us to evaluate 
equation (40). 

8.4 Corollary. We have 

�(DnUn ,Ø) = (f�)2 = n! 
��n 

Proof. When w = DnUn in Theorem 8.3 we have Sw = {n + 1, n + 
2, . . . , 2n}, ai = n − i, and bi = n, from which the proof is immediate. � 

Note (for those familiar with the representation theory of finite groups). 
It can be shown that the numbers f�, for � √ n, are the degrees of the irre­
ducible representations of the symmetric group Sn. Given this, Corollary 8.4 
is a special case of the result that the sum of the squares of the degrees of 
the irreducible representations of a finite group G is equal to the order G of| |
G. There are many other intimate connections between the representation 
theory of Sn, on the one hand, and the combinatorics of Young’s lattice and 
Young tableaux, on the other. There is also an elegant combinatorial proof of 
Corollary 8.4, known as the Robinson-Schensted correspondence, with many 
fascinating properties and with deep connections with representation theory. 

We now consider a variation of Theorem 8.3 in which we are not concerned 
with the type w of a Hasse walk from Ø to w, but only with the number 
of steps. For instance, there are three Hasse walks of length three from Ø 
to the partition 1, given by Ø, 1,Ø, 1; Ø, 1, 2, 1; and Ø, 1, 11, 1. Let λ(φ, �) 
denote the number of Hasse walks of length φ from Ø to �. Note the two 
following easy facts: 

(F1) λ(φ, �) = 0 unless φ � � (mod 2). | | 

(F2) λ(φ, �) is the coefficient of � in the expansion of (D + U)α(Ø) as a 
linear combination of partitions. 

Because of (F2) it is important to write (D + U)α as a linear combination 
of terms U iDj , just as in the proof of Theorem 8.3 we wrote a word w in U 
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and D in this form. Thus define integers bij (φ) by 

(D + U )α = bij (φ)U iDj . (44) 
i,j 

Just as in the proof of Theorem 8.3, the numbers bij (φ) exist and are well-
defined. 

8.5 Lemma. We have bij (φ) = 0 if φ − i − j is odd. If φ − i − j = 2m 
then 

φ! 
bij (φ) = . (45)

2m i! j! m! 

Proof. The assertion for φ − i − j odd is equivalent to (F1) above, so 
assume φ − i − j is even. The proof is by induction on φ. It’s easy to check 
that (45) holds for φ = 1. Now assume true for some fixed φ ≡ 1. Using (44) 
we obtain 

� 
bij (φ + 1)U iDj = (D + U )α+1 

i,j 
� 

= (D + U ) bij (φ)U iDj 

i,j 
� 

= bij (φ)(DU iDj + U i+1Dj ). 
i,j 

In the proof of Theorem 8.3 we saw that DU i = U iD + iU i−1 (see equation 
(43)). Hence we get 

bij (φ + 1)U iDj = bij (φ)(U iDj+1 + iU i−1Dj + U i+1Dj ). (46) 
i,j i,j 

As mentioned after (44), the expansion of (D + U )α+1 in terms of U iDj is 
unique. Hence equating coefficients of U iDj on both sides of (46) yields the 
recurrence 

bij (φ + 1) = bi,j−1(φ) + (i + 1)bi+1,j (φ) + bi−1,j (φ). (47) 

It is a routine matter to check that the function φ!/2mi!j!m! satisfies the same 
recurrence (47) as bij (φ), with the same intial condition b00(0) = 1. From this 
the proof follows by induction. � 

79 



� � 

� 
 

� 

From Lemma 8.5 it is easy to prove the following result. 

8.6 Theorem. Let φ ≡ n and � √ n, with φ − n even. Then 

φ 
λ(φ, �) = (1 · 3 5 · · · (φ − n − 1))f � . 

n 
·

Proof. Apply both sides of (44) to Ø. Since U iDj (Ø) = 0 unless j = 0, 
we get 

� 
(D + U )α(Ø) = bi0(φ)U i(Ø) 

i 
� � 

= bi0(φ) f ��. 
i ��i 

Since by Lemma 8.5 we have bi0(φ) = α

i (1 · 3 5 · · · (φ − i − 1)) when φ − i is·
even, the proof follows from (F2). � 

b

b
Note. The proof of Theorem 8.6 only required knowing the value of 

i0(φ). However, in Lemma 8.5 we computed bij (φ) for all j. We could have 
carried out the proof so as only to compute bi0(φ), but the general value of 
ij (φ) is so simple that we have included it too. 

8.7 Corollary. The total number of Hasse walks in Y of length 2m 
from Ø to Ø is given by 

λ(2m, Ø) = 1 · 3 5· · · · (2m − 1). 

Proof. Simply substitute � = Ø (so n = 0) and φ = 2m in Theorem 8.6. 

The fact that we can count various kinds of Hasse walks in Y suggests 
that there may be some finite graphs related to Y whose eigenvalues we 
can also compute. This is indeed the case, and we will discuss the simplest 
case here. Let Yj−1,j denote the restriction of Young’s lattice Y to ranks 
j − 1 and j. Identify Yj−1,j with its Hasse diagram, regarded as a (bipartite) 
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graph. Let p(i) = Yi , the number of partitions of i. (The function p(i) has | |
been extensively studied, beginning with Euler, though we will not discuss 
its fascinating properties here.) 

8.8 Theorem. The eigenvalues of Yj−1,j are given as follows: 0 is an 
eigenvalue of multiplicity p(j) − p(j − 1); and for 1 � s � j, the numbers 
±≥

s are eigenvalues of multiplicity p(j − s) − p(j − s − 1). 

RY
Proof. Let A denote the adjacency matrix of Yj−1,j . Since RYj−1,j = 
j−1 → RYj (vector space direct sum), any vector v ⊕ RYj−1,j can be written 

uniquely as v = vj−1 + vj , where vi ⊕ RYi. The matrix A acts on the vector 
space RYj−1,j as follows [why?]: 

A(v) = D(vj ) + U (vj−1). (48) 

RY

Just as Theorem 4.7 followed from Lemma 4.6, we deduce from Lemma 8.2 
that for any i we have that Ui : RYi � RYi+1 is one-to-one and Di : RYi � 

i−1 is onto. It follows in particular that 

dim(ker(Di)) = dim RYi − dim RYi−1 

= p(i) − p(i − 1), 

where ker denotes kernel. 

Case 1. Let v ⊕ ker(Dj ), so v = vj . Then Av = Dv = 0. Thus ker(Dj ) is 
an eigenspace of A for the eigenvalue 0, so 0 is an eigenvalue of multiplicity 
at least p(j) − p(j − 1). 

Case 2. Let v ⊕ ker(Ds) for some 0 � s � j − 1. Let 

v = ± j − sU j−1−s(v) + U j−s(v). 

Note that v� ⊕ RYj−1,j , with v� = ±≥
j − sU j−1−s(v) and v� = U j−s(v).j−1 j 

Using equation (43), we compute 

A(v �) = U (vj−1) + D(vj 
�) 

= j − sU j−s(v) + DU j−s(v) 

= ± j − sU j−s(v) + U j−sD(v) + (j − s)U j−s−1(v) 
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= ± 
� 

j − sU j−s(v) + (j − s)U j−s−1(v) 

= j − s v � . (49)± 

It’s easy to verify (using the fact that U is one-to-one) that if v(1), . . . , v(t) 
is a basis for ker(Ds), then v(1)�, . . . , v(t)� are linearly independent. Hence 
by (49) we have that ±≥

j − s is an eigenvalue of A of multiplicity at least 
t = dim(ker(Ds)) = p(s) − p(s − 1). 

We have found a total of 

j−1 

p(j) − p(j − 1) + 2 (p(s) − p(s − 1)) = p(j − 1) + p(j) 
s=0 

eigenvalues of A. (The factor 2 above arises from the fact that both +
≥

j − s 
and −≥

j − s are eigenvalues.) Since the graph Yj−1,j has p(j − 1) + p(j) 
vertices, we have found all its eigenvalues. � 

An elegant combinatorial consequence of Theorem 8.8 is the following. 

8.9 Corollary. Fix j ≡ 1. The number of ways to choose a partition � 
of j, then delete a square from � (keeping it a partition), then insert a square, 
then delete a square, etc., for a total of m insertions and m deletions, ending 
back at �, is given by 

j 

[p(j − s) − p(j − s − 1)]s m, m > 0. (50) 
s=1 

Proof. Exactly half the closed walks in Yj−1,j of length 2m begin at 
an element of Yj [why?]. Hence if Yj−1,j has eigenvalues α1, . . . , αr , then by 

1Corollary 1.3 the desired number of walks is given by 
2 (α

2m + + α2m).1 r· · · 
Using the values of α1, . . . , αr given by Theorem 8.8 yields (50). � 

For instance, when j = 7, equation (50) becomes 4 + 2 · 2m + 2 3m +· 
4m + 5m + 7m . When m = 1 we get 30, the number of edges of the graph Y6,7 

[why?]. 
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