
� 

6 Young diagrams and q-binomial coefficients. 

A partition � of an integer n ← 0 is a sequence � = (�1, �2, . . .) of integers 
�i ← 0 satisfying �1 �2 and i�1 �i = n. Thus all but finitely ← ← · · · 
many �i are equal to 0. Each �i > 0 is called a part of �. We sometimes 
suppress 0’s from the notation for �, e.g., (5, 2, 2, 1), (5, 2, 2, 1, 0, 0, 0), and 
(5, 2, 2, 1, 0, 0, . . .) all represent the same partition � (of 10, with four parts). 
If � is a partition of n, then we denote this by � � n or � = n.| | 

6.1 Example. There are seven partitions of 5, namely (writing e.g. 
221 as short for (2, 2, 1)): 5, 41, 32, 311, 221, 2111, and 11111. 

The subject of partitions of integers has been extensively developed, and 
we will only be concerned here with a small part related to our previous 
discussion. Given positive integers m and n, let L(m, n) denote the set of all 
partitions with at most m parts and with largest part at most n. For instance, 
L(2, 3) = {Ø, 1, 2, 3, 11, 21, 31, 22, 32, 33}. (Note that we are denoting by Ø 
the unique partition (0, 0, . . .) with no parts.) If � = (�1, �2, . . .) and µ = 
(µ1, µ2, . . .) are partitions, then define � � µ if �i � µi for all i. This makes 
the set of all partitions into a very interesting poset, denoted Y and called 
Young’s lattice (named after the British mathematician Alfred Young, 1873– 
1940). (It is called “Young’s lattice” rather than “Young’s poset” because it 
turns out to have certain properties which define a lattice. However, these 
properties are irrelevant to us here, so we will not bother to define the notion 
of a lattice.) We will be looking at some properties of Y in Section 8. The 
partial ordering on Y , when restricted to L(m, n), makes L(m, n) into a 
poset which also has some fascinating properties. The diagrams below show 
L(1, 4), L(2, 2), and L(2, 3). 
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� � 
� � � �

� � 
� �� �

� 33 

� 4 � 22 � 32 

� 3 � 21 22 �� �� 31
���� �� ����

� � � � � 
� �� 3� 2 11�� �� 2 21�� 

�� �� ���� ��
� � � � � 

� 1 �� �2�1 11�� �� 

� Ø � Ø ���1 

� Ø 

There is a nice geometric way of viewing partitions and the poset L(m, n). 
The Young diagram (somtimes just called the diagram) of a partition � is a 
left-justified array of squares, with �i squares in the ith row. For instance, 
the Young diagram of (4, 3, 1, 1) looks like: 

If dots are used instead of boxes, then the resulting diagram is called a 
Ferrers diagram. The advantage of Young diagrams over Ferrers diagrams is 
that we can put numbers in the boxes of a Young diagram, which we will do 
in Section 7. Observe that L(m, n) is simply the set of Young diagrams D 
fitting in an m × n rectangle (where the upper-left (northwest) corner of D is 
the same as the northwest corner of the rectangle), ordered by inclusion. We 
will always assume that when a Young diagram D is contained in a rectangle 
R, the northwest corners agree. It is also clear from the Young diagram point 
of view that L(m, n) and L(n, m) are isomorphic partially ordered sets, the 
isomorphism being given by transposing the diagram (i.e., interchanging rows 
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and columns). If � has Young diagram D, then the partition whose diagram 
is Dt (the transpose of D) is called the conjugate of � and is denoted �◦ . For 
instance, (4, 3, 1, 1)◦ = (4, 2, 2, 1), with diagram 

6.2 Proposition. L(m, n) is graded of rank mn and rank-symmetric. 
The rank of a partition � is just � (the sum of the parts of � or the number | |
of squares in its Young diagram). 

Proof. As in the proof of Proposition 5.6, we leave to the reader every­
thing except rank-symmetry. To show rank-symmetry, consider the comple­

¯ment � of � in an m × n rectangle R, i.e., all the squares of R except for �. 
¯(Note that � depends on m and n, and not just �.) For instance, in L(4, 5), 

the complement of (4, 3, 1, 1) looks like 

¯If we rotate the diagram of � by 180∗ then we obtain the diagram of a 
partition ˜ | | |˜|� √ L(m, n) satisfying � + � = mn. This correspondence between 
� and �̃ shows that L(m, n) is rank-symmetric. � 

Our main goal in this section is to show that L(m, n) is rank-unimodal 
and Sperner. Let us write pi(m, n) as short for pi(L(m, n)), the number of 
elements of L(m, n) of rank i. Equivalently, pi(m, n) is the number of par­
titions of i with largest part at most n and with at most m parts, or, in 
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� � 

� � 

� � 

other words, the number of distinct Young diagrams with i squares which 
fit inside an m × n rectangle (with the same northwest corner, as explained 
previously). Though not really necessary for this goal, it is nonetheless in­
teresting to obtain some information on these numbers pi(m, n). First let us 
consider the total number L(m, n) of elements in L(m, n).| | 

6.3 Proposition. We have L(m, n) = m+n . 
m

| | 

Proof. We will give an elegant combinatorial proof, based on the fact 
that m+n is equal to the number of sequences a1, a2, . . . , am+n, where each 

m 
aj is either N or E, and there are m N ’s (and hence n E’s) in all. We will 
associate a Young diagram D contained in an m × n rectangle R with such 
a sequence as follows. Begin at the lower left-hand corner of R, and trace 
out the southeast boundary of D, ending at the upper right-hand corner of 
R. This is done by taking a sequence of unit steps (where each square of R 
is one unit in length), each step either north or east. Record the sequence of 
steps, using N for a step to the north and E for a step to the east. 

Example. Let m = 5, n = 6, � = (4, 3, 1, 1). Then R and D are given by: 

× × × × 

× × × 

× 

× 

The corresponding sequence of N ’s and E’s is NENNEENENEE. 

It is easy to see (left to the reader) that the above correspondence gives 
a bijection between Young diagrams D fitting in an m × n rectangle R, and 
sequences of m N ’s and n E’s. Hence the number of diagrams is equal to 

m+n , the number of sequences. � 
m 

We now consider how many elements of L(m, n) have rank i. To this end, 
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� � 
� � 

� � � � 

� � 

let q be an indeterminate; and given j ← 1 define [j] = 1 + q + q2 + + 
qj−1 

· · ·
. Thus [1] = 1, [2] = 1 + q, [3] = 1 + q + q2, etc. Note that [j] is a 

polynomial in q whose value at q = 1 is just j (denoted [j]q=1 = j). Next 
define [j]! = [1][2] · · · [j] for j ← 1, and set [0]! = 1. Thus [1]! = 1, [2]! = 1 + q, 
[3]! = (1 + q)(1 + q + q2) = 1 + 2q + 2q2 + q3, etc., and [j]!q=1 = j!. Finally 
define for k ← j ← 0, 

� ⎟ 
k [k]! 

= . 
j [j]![k − j]! 

kThe expression 
j is called a q-binomial coefficient (or Gaussian coefficient ). 

Since [r]!q=1 = r!, it is clear that 
� ⎟ � � 
k k 

= . 
jj q=1 

kOne sometimes says that 
j is a “q-analogue of the binomial coefficient k .”

j 

k
6.4 Example. We have 

j = k [why?]. Moreover, 
k−j 

� ⎟ � ⎟ 
k k 

= = 1 
0 k 

� ⎟ � ⎟ 
k 

= 
k 

= [k] = 1 + q + q 2 + · · ·+ q k−1 

1 k − 1 
� ⎟ 
4 [4][3][2][1] 3 4 = = 1 + q + 2q 2 + q + q
2 [2][1][2][1] 

� ⎟ � ⎟ 
5 

= 
5 

= 1 + q + 2q 2 + 2q 3 + 2q 4 + q 5 + q 6 . 
2 3 

kIn the above example, 
j was always a polynomial in q (and with non­

negative integer coefficients). It is not obvious that this is always the case, 
but it will follow easily from the following lemma. 

6.5 Lemma. We have 
� ⎟ � ⎟ � ⎟ 
k k − 1

+ q k−j k − 1 
= , (26)

j j j − 1 
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 � � � 

� � 

= . � 

� � � � � � 

� � 

� � 

0 kwhenever k 1, with the “initial conditions” 
0 = 1, 

j = 0 if j < 0 or← 
� �

kj > k (the same intial conditions satisfied by the binomial coefficients 
j ). 

Proof. This is a straightforward computation. Specifically, we have 
� ⎟ � ⎟ 
k − 1 [k − 1]! 

+ q k−j [k − 1]!
+ q k−j k − 1

= 
j j − 1 [j]![k − 1 − j]! [j − 1]![k − j]! 

qk−j[k − 1]! 1 
= + 

[j − 1]![k − 1 − j]! [j] [k − j] 

[k − 1]! [k − j] + qk−j [j] 
= 

[j − 1]![k − 1 − j]! [j][k − j] 
[k − 1]! [k] 

= 
[j − 1]![k − 1 − j]! [j][k − j] 
� ⎟ 
k 
j 

Note that if we put q = 1 in (26) we obtain the well-known formula 

k k − 1 k − 1 
= + ,

j j j − 1 

which is just the recurrence defining Pascal’s triangle. Thus equation (26) 
may be regarded as a q-analogue of the Pascal triangle recurrence. 

We can regard equation (26) as a recurrence relation for the q-binomial 
coefficients. Given the initial conditions of Lemma 6.5, we can use (26) induc­

ktively to compute 
j for any k and j. From this it is obvious by induction 

kthat the q-binomial coefficient 
j is a polynomial in q with nonnegative inte­

ger coefficients. The following theorem gives an even stronger result, namely, 
an explicit combinatorial interpretation of the coefficients. 

6.6 Theorem. Let pi(m, n) denote the number of elements of L(m, n) 
of rank i. Then 

� ⎟ 
� m + n 

pi(m, n)q i = . (27) 
m 

i�0 
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� 

� � | | 

� � 

(Note. The sum on the left-hand side is really a finite sum, since pi(m, n) = 
0 if i > mn.) 

Proof. Let P (m, n) denote the left-hand side of (27). We will show that 

P (0, 0) = 1, and P (m, n) = 0 if m < 0 or n < 0 (28) 

P (m, n) = P (m, n− 1) + q nP (m− 1, n). (29) 

Note that equations (28) and (29) completely determine P (m, n). On the 
other hand, substituting k = m + n and j = m in (26) shows that m+n 

m 
also satisfies (29). Moreover, the initial conditions of Lemma 6.5 show that 

m+n also satisfies (28). Hence (28) and (29) imply that P (m, n) = m+n ,
m m 

so to complete the proof we need only establish (28) and (29). 

Equation (28) is clear, since L(0, n) consists of a single point (the empty 
partition Ø), so i�0 pi(0, n)xi = 1; while L(m, n) is empty (or undefined, 
if you prefer) if m < 0 or n < 0, 

The crux of the proof is to show (29). Taking the coefficient of qi of both 
sides of (29), we see [why?] that (29) is equivalent to 

pi(m, n) = pi(m, n− 1) + pi−n(m− 1, n). (30) 

Consider a partition � � i whose Young diagram D fits in an m× n rectangle 
R. If D does not contain the upper right-hand corner of R, then D fits in 
an m × (n − 1) rectangle, so there are pi(m, n − 1) such partitions �. If on 
the other hand D does contain the upper right-hand corner of R, then D 
contains the whole first row of R. When we remove the first row of R, we 
have left a Young diagram of size i− n which fits in an (m− 1) × n rectangle. 
Hence there are pi−n(m− 1, n) such �, and the proof follows [why?]. � 

Note that if we set q = 1 in (27), then the left-hand side becomes L(m, n)
and the right-hand side m+n , agreeing with Proposition 6.3. 

m 

k
Note: There is another well-known interpretation of 

j , this time not 

of its coefficients (regarded as a polynomial in q), but rather at its values for 
certain q. Namely, suppose q is the power of a prime. Recall that there is 
a field Fq (unique up to isomorphism) with q elements. Then one can show 
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� � 

� 

that k is equal to the number of j-dimensional subspaces of a k-dimensional
j 

vector space over the field Fq . We will not discuss the proof here since it is 
not relevant for our purposes. 

As the reader may have guessed by now, the poset L(m, n) is isomorphic 
to a quotient poset Bs/G for a suitable integer s > 0 and finite group G 
acting on Bs. Actually, it is clear that we must have s = mn since L(m, n) 
has rank mn and in general Bs/G has rank s. What is not so clear is the 
right choice of G. To this end, let R = Rmn denote an m × n rectangle of 
squares. For instance, R35 is given by the 15 squares of the diagram 

S

We now define the group G = Gmn as follows. It is a subgroup of the group 
R of all permutations of the squares of R. A permutation λ in G is allowed 

to permute the elements in each row of R in any way, and then to permute the 
rows themselves of R in any way. The elements of each row can be permuted 
in n! ways, so since there are m rows there are a total of n!m permutations 
preserving the rows. Then the m rows can be permuted in m! ways, so it 
follows that the order of Gmn is given by m!n!m . (The group Gmn is called 
the wreath product of Sn and Sm, denoted Sn Sm or Sn wr Sm. However, 
we will not discuss the general theory of wreath products here.) 

6.7 Example. Suppose m = 4 and n = 5, with the boxes of X labelled 
as follows. 

1 

6 

11 

16 

2 

7 

12 

17 

3 

8 

13 

18 

4 

9 

14 

19 

5 

10 

15 

20 
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Then a typical permutation λ in G(4, 5) looks like


16 

4 

12 

7 

i.e., λ(16) = 1, λ(20) = 2, etc. 

20 

1 

13 

9 

17 

5 

15 

6 

19 

2 

14 

10 

18 
, 

3 

11 

8 

We have just defined a group Gmn of permutations of the set Rmn of 
squares of an m×n rectangle. Hence Gmn acts on the boolean algebra BR of 
all subsets of the set R. The next lemma describes the orbits of this action. 

�

6.8 Lemma. Every orbit O of the action of Gmn on BR contains 
exactly one Young diagram D (i.e., exactly one subset D ∪ R such that D 
is left-justified, and if �i is the number of elements of D in row i of R, then 

1 �2 �m).← ← · · · ← 

Proof. Let S be a subset of R, and suppose that S has �i elements in 
row i. If λ √ Gmn and λ S has ϕi elements in row i, then ϕ1, . . . , ϕm is· 
just some permutation of �1, . . . , �m [why?]. There is a unique permutation 
�1, . . . , �m of �1, . . . , �m satisfying �1 �m, so the only possible Young ← · · · ← 
diagram D in the orbit λ S is the one of shape � = (�1, . . . , �m). It’s easy ·
to see that the Young diagram D� of shape � is indeed in the orbit λ S.· 
For by permuting the elements in the rows of R we can left-justify the rows 
of S, and then by permuting the rows of R themselves we can arrange the 
row sizes of S to be in weakly decreasing order. Thus we obtain the Young 
diagram D� as claimed. � 

We are now ready for the main result of this section. 

6.9 Theorem. The quotient poset BRmn /Gmn is isomorphic to L(m, n). 

Proof. Each element of BR/Gmn contains a unique Young diagram D� 

by Lemma 6.8. Moreover, two different orbits cannot contain the same Young 
diagram D since orbits are disjoint. Thus the map � : BR/Gmn � L(m, n) 
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 � 



 � 

2 

defined by �(O�) = � is a bijection (one-to-one and onto), where O� is the 
orbit containing D�. We claim that in fact � is an isomorphism of partially 
ordered sets. We need to show the following: Let O and O� be orbits of Gmn 

(i.e., elements of BR/Gmn). Let D� and D�� be the unique Young diagrams 
in O and O�, respectively. Then there exist D √ O and D� � satisfying 
D ∪ D� if and only if � � �� in L(m, n). 

√ O

The “if” part of the previous sentence is clear, for if � � �� then D� ∪
D�� . So assume there exist D √ O and D� � satisfying D ∪ D� . The√ O
lengths of the rows of D, written in decreasing order, are �1, . . . , �m, and 
similarly for D� . Since each row of D is contained in a row of D�, it follows 
that for each 1 � j � m, D� has at least j rows of size at least �j . Thus 
the length �� 

j of the jth largest row of D� is at least as large as �j . In other 
words, �j � �� 

j , as was to be proved. � 

Combining the previous theorem with Theorem 5.9 yields: 

6.10 Corollary. The posets L(m, n) are rank-symmetric, rank-unimodal, 
and Sperner. 

Note that the rank-symmetry and rank-unimodality of L(m, n) can be 
rephrased as follows: The q-binomial coefficient m+n has symmetric and 

m 
unimodal coefficients. While rank-symmetry is easy to prove (see Proposi­
tion 6.2), the unimodality of the coefficients of m+n is by no means ap­

m 
parent. It was first proved by J. Sylvester in 1878 by a proof similar to 
the one above, though stated in the language of the invariant theory of bi­
nary forms. For a long time it was an open problem to find a combinato­
rial proof that the coefficients of m+n are unimodal. Such a proof would 

m 
give an explicit injection (one-to-one function) µ : L(m, n)i � L(m, n)i+1 for 
i < 1 mn. (One difficulty in finding such maps µ is to make use of the hypoth­
esis that i < 1 mn.) Finally around 1989 such a proof was found by Kathy 

2 
O’Hara. However, O’Hara’s proof has the defect that the maps µ are not 
order-matchings. Thus her proof does not prove that L(m, n) is Sperner, but 
only that it’s rank-unimodal. It is an outstanding open problem in algebraic 
combinatorics to find an explicit order-matching µ : L(m, n)i � L(m, n)i+1 

for i < 1 mn.
2 

Note that the Sperner property of L(m, n) (together with the fact that the 
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largest level is in the middle) can be stated in the following simple terms: The 
largest possible collection C of Young diagrams fitting in an m× n rectangle 
such that no diagram in C is contained in another diagram in C is obtained 

1by taking all the diagrams of size 
2 mn. Although the statement of this fact 

requires almost no mathematics to understand, there is no known proof that 
doesn’t use algebraic machinery. (The several known algebraic proofs are all 
closely related, and the one we have given is the simplest.) Corollary 6.10 is 
a good example of the efficacy of algebraic combinatorics. 

An application to number theory. There is an interesting application 
of Corollary 6.10 to a number-theoretic problem. Fix a positive integer k. 
For a finite subset S of R+ = {� √ R : � > 0}, and for a real number � > 0, 
define 

⎠ ⎛ 
S 

fk(S, �) = # T √ : t = � 
k 

t�T 

In other words, fk(S, �) is the number of k-element subsets of S whose el­
ements sum to �. For instance, f3({1, 3, 4, 6, 7}, 11) = 2, since 1 + 3 + 7 = 
1 + 4 + 6 = 11. 

Given positive integers k < n, our object is to maximize fk (S, �) subject 
to the condition that #S = n. We are free to choose both S and �, but k 
and n are fixed. Call this maximum value hk (n). Thus 

hk(n) = max fk (S, �). 
�∗R+ 

S�R+ 
#S=n 

What sort of behavior can we expect of the maximizing set S? If the elements 
of S are “spread out,” say S = {1, 2, 4, 8, . . . , 2n−1}, then all the subset 
sums of S are distinct. Hence for any � √ R+ we have fk(S, �) = 0 or 1. 
Similarly, if the elements of S are “unrelated” (e.g., linearly independent over 
the rationals, such as S = {1,

≥
2,
≥

3, e, λ}), then again all subset sums are 
distinct and fk (S, �) = 0 or 1. These considerations make it plausible that 
we should take S = [n] = {1, 2, . . . , n} and then choose � appropriately. In 
other words, we are led to the conjecture that for any S √ 

�

R
+� 

and � √ R+ ,
n 

f
we have 

k (S, �) � fk([n], ϕ), (31) 

for some ϕ √ R+ to be determined. 
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 � 
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� � 

First let us evaluate fk([n], �) for any �. This will enable us to determine 
the value of ϕ in (31). Let S = {i1, . . . , ik} ∪ [n] with 

1 � i1 < i2 < < ik � n, i1 + + ik = �. (32)· · · · · ·

Let jr = ir − r. Then (since 1 + 2 + · · ·+ k = k+1 )
2 

k + 1 
n− k ← jk ← jk−1 0, j1 + + jk = �− . (33)← · · · ← j1 ← · · ·

2 

Conversely, given j1, . . . , jk satisfying (33) we can recover i1, . . . , ik satisfying 
(32). Hence fk ([n], �) is equal to the number of sequences j1, . . . , jk satisfying 
(33). Now let 

�(S) = (jk , jk−1, . . . , j1). 

Note that �(S) is a partition of the integer � − k+1 with at most k parts
2 

and with largest part at most n− k. Thus 

fk ([n], �) = p�−(k+1)(k, n− k), (34) 
2 

or equivalently, 
2 ) n 

fk([n], �)q �−(k+1 

= . 
k 

��(k+1

2 )


By the rank-unimodality (and rank-symmetry) of L(n−k, k) (Corollary 6.10), 
nthe largest coefficient of 
k is the middle one, that is, the coefficient of 

⊂k(n − k)/2⊆. It follows that for fixed k and n, fk([n], �) is maximized for 
� = ⊂k(n − k)/2⊆ + k+1 = ⊂k(n + 1)/2⊆. Hence the following result is 

2 
plausible. 

6.11 Theorem. Let S √ 
�

R
+� 

, � √ R+, and k √ P. Then 
n 

fk (S, �) � fk ([n], ⊂k(n + 1)/2⊆). 

Proof. Let S = {a1, . . . , an} with 0 < a1 < < an. Let T and U· · · 
be distinct k-element subsets of S with the same element sums, say T = 
{ai1 , . . . , aik } and U = {aj1 , . . . , ajk } with i1 < i2 < < ik and j1 < j2 < 

Define T � = {i1, . . . , ik } and U� = {j1, . . . , jk}, so T �, U� .
k

· · · < jk . 
· · · 

√ [n] 

The crucial observation is the following: 
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Claim. The elements �(T �) and �(U�) are incomparable in L(k, n− k), 
i.e., neither �(T �) � �(U�) nor �(U�) � �(T �). 

Proof of claim. Suppose not, say �(T �) � �(U)� to be definite. Thus 
by definition of L(k, n − k) we have ir r − r for 1 � r � k. Hence 
i

− r � j
r � jr for 1 � r � k, so also air � ajr (since a1 < < an). But· · · 
ai1 + · · · + aik = aj1 + + ajk by assumption, so air = ajr for all r. This· · ·
contradicts the assumption that T and U are distinct and proves the claim. 

p

It is now easy to complete the proof of Theorem 6.11. Suppose that 
S1, . . . , Sr are distinct k-element subsets of S with the same element sums. 
By the claim, {�(S1 

�), . . . , �(Sr 
�)} is an antichain in L(k, n − k). Hence r 

cannot exceed the size of the largest antichain in L(k, n−k). By Theorem 6.6 
and Corollary 6.10, the size of the largest antichain in L(k, n−k) is given by 
≥k(n−k)/2∈(k, n− k). By equation (34) this number is equal to fk ([n], ⊂k(n + 

1)/2⊆). In other words, 

r � fk ([n], ⊂k(n + 1)/2⊆), 

which is what we wanted to prove. � 

Note that an equivalent statement of Theorem 6.11 is that hk (n) is equal 
to the coefficient of ⊂k(n− k)/2⊆ in n [why?]. 

k 
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