BOUNDS ON CROSSING NUMBERS

DANIEL GULOTTA

1. INTRODUCTION

Let G be a simple graph. The crossing number of G is the minimum number of
times that the edges of G cross in any drawing of G in the plane.
First, it is important to determine exactly what is meant by a drawing.

Definition 1.1. A drawing of a graph is defined to be a map that sends each vertex
to a point in the plane and each edge to a simple path, subject to several conditions.
The endpoints of the image of an edge must be the images of its vertices. The image
of a vertex must not lie in the interior of the image of any edge. If a pair of edges
share an interior point, then they must cross at this point. No triple of edges can
share an interior point.

In addition to the ordinary crossing number (denoted cr(G)), several other cross-
ing numbers are of interest.

Definition 1.2. The pairwise-crossing number paircer(G) is the minimum number
of pairs of edges of G that cross in a drawing of G.

Definition 1.3. The odd-crossing number oddcr(G) is the minimum number of
pairs of edges of G that cross an odd number of times in a drawing of G.

Much remains to be known about these crossing numbers, but a few relations are
known. Clearly, odder(G) < paircr(G) < cr(G). The next section will give some
bounds on paircr(G) in terms of the number of edges and vertices. Additional rela-
tions between cr(G) and the pairwise and odd crossing numbers will be presented
later.

2. BOUNDS ON CROSSING NUMBERS IN TERMS OF THE NUMBER OF EDGES AND
VERTICES

Lemma 2.1. Let V(G) be the number of vertices of G, and let E(G) be the number
of edges. Then paircr(G) > E(G) — 3V(G).

Suppose that G is planar. Let F/(G) be the number of faces in a planar drawing of
G. Since G is a simple graph, each of its faces has at least three sides. The F(G) <
2E(G). By Euler’s theorem, V(G) — E(G) + F(G) =2, s0 V(G) — £ E(G) > 2.

If E(G)—3V(Q) is not positive, draw G such that the number of pairs of crossing
edges is minimized. Removing an edge with a crossing decreases E(G) — 3V (G) by
one and paircr(G) by at least one. The lemma follows by induction.
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Theorem 2.2. Let V(G) be the number of vertices of G, and let E(G) be the
number of edges. If E(G) > 4V (G), then the pairwise crossing number is at least
E(GQ)3

6V (G2 "

Draw G so that the number of pairs of crossing edges is minimized. Color each
vertex either red or blue randomly and independently with probability of red p.
Form the subgraph consisting of all red vertices and all edges connecting two red
vertices. The expectation value for the number of vertices of this subgraph is pV (G),
the expectation value for the number of edges is p? E(G), and the expectation of
the pairwise crossing number is at most the expectation of the number of pairs
of crossing edges in the current drawing, which is p*paircr(G). By the lemma,
ppairer(G) > p2E(G) — 3pV(G). Since E(G) > 4V(G), p can be set to 2 (G)

EG)
3
Then paircr(G) > %-

Such bounds can be used, for example, to prove the Szemerédi-Trotter Theorem.

3. RESULTS CONCERNING ODD CROSSINGS

The following theorem was proved first by Hanani [CH34] and later by Tutte
[T70].

Theorem 3.1. oddcr(G) = 0 implies cr(G) = 0.

Janos Pach and Géza To6th [PTO00] proved the following generalization, which
will be used later to replace paircr(G) with odder(G) in various inequalities.

Theorem 3.2. For any drawing of G, let G’ be the subgraph of G consisting of all
edges of G that cross every other edge an even number of times. Then there is a
drawing of G for which the edges of G’ do not cross any edge of G.

The proof presented here is somewhat different from the original. Suppose that
there was a counterexample to the theorem. Then there would be a minimal coun-
terexample (G, G').

Lemma 3.3. If G is a minimal counterexample, then it satisfies these properties:

(1) No vertex of has degree one in G'.
(2) No two vertices of degree two in G’ are connected by an edge of G'.

To prove (1), suppose that a G’ had a vertex v of degree one in G’. Let e be
the edge of G’ that has this vertex as an endpoint. Since is (G, G’) minimal, it is
possible to redraw G so that e is the only edge of G’ intersecting any edge of G. v
can be pulled alonge until e no longer intersects any edges. Since e cannot intersect
any edges of G/, this does not introduce any new intersections of edges of G'. But
this contradicts the assumption that (G, G’) is a counterexample.

If G’ has two vertices of degree two that share an edge, then contract that edge.
Redraw so that the edges of the modified G’ have no crossings. The only possible
to obstacle to undoing the contraction is that the cyclic order of the edges may be
incorrect. Since the contracted vertex has only two edges from G, it is possible to
correct the cyclic order without introducing any crossings of those two edges. Again
this contradicts the assumption that (G, G’) is a counterexample. This proves the
lemma.

Construct G’ as follows. Delete all vertices that have degree zero in /. Also
delete any vertex of degree two in G’ and connect the two vertices that were adjacent
to this vertex. By lemma 3.3, every vertex of G has degree at least three.
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FIGURE 3.1. If every cycle of G has an empty interior or exterior,
then G is one of these graphs.

Let P be the longest path of G, and suppose the sequence of vertices is vo, v1, . . . , Un.
Because P is maximal, all neighbors of vy must be in the path. vy has at least
three neighbors, so there exist j > ¢ > 1 such that vov; and vov; are edges. So
Vo, V1, . .,v; is a cycle and vov; is a chord of this cycle. If G consists entirely of the
pullback of this cycle and vgv;, then it must be one of the graphs shown in 3.1.

Let C be a cycle consisting of edges in G’. The previous paragraph implies that
such a cycle exists. Since C is a closed curve, it separates the plane into an “interior”
and an “exterior” (possibly disconnected if C' intersects itself). If G is not one of
the graphs of figure 3.1, C can also be chosen so that the interior and exterior both
contain at least one vertex. Define the interior graph I as follows. The vertex set is
the set of all vertices of G that are either on the loop or in the interior of the loop.
The edge set consists of the loop edges and all edges such that there is a segment
at each end of the edge lying entirely in the interior. Note that if this is the case at
one end, then it must be the case at the other since the edge must cross the loop
an even number of times. Define the exterior graph E similarly. The union of [
and F is G, and their intersection is the loop. Define I’ = I NG’ and E' = ENG.
Because (G, G’) is a minimal counterexample, I and E can be redrawn to have no
I’ intersections and E’ intersections, respectively. I claim that the redrawings can
be performed so that I remains entirely inside C' and E remains entirely outside C.
If that is the case, then the two graphs can be glued together to form a drawing of
G with no G’ intersections.

Call a subgraph of G C-connected if it cannot be expressed as the union of
two proper subgraphs having only vertices in C' in common. Call the C-connected
components of G (other than edges of C) bridges. Call the points of a bridge that
are also vertices of C' anchor points.

In order for there to be no G’ crossings, each bridge must be entirely in the
interior or the exterior. The first bridge of I can always be chosen to be in the
interior. Now look at a second bridge of I. It is not possible for two anchor points
a and b of the first bridge separate two anchor points ¢ and d of the second bridge
around C'. If there is a path connecting a and b and another connecting ¢ and d,
then these paths must have crossed an odd number of times in the original drawing
since they could not “go around” each other by crossing an edge of C' an odd number
of times. This implies that neither path can have all of its edges in G’. Make all of
the G’ edges of each bridge that are not contained in any G’ chord of C' very small.
Then any intersections of bridges must be intersections between non-G’ edges. The
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FI1GURE 3.2. Possible impediments to placing a bridge in the in-
terior, and their resolution. C' is the circle, the edges of G’ are
solid curves, and the other edges of G are dotted curves. a and b
could not have separated any other pair of vertices shown here in
the original drawing. Any crossings between bridges can always be
made to occur at edges not in G’.

third and subsequent bridges can be added in the same way. Therefore I can be
redrawn entirely in the interior, and E can be drawn entirely in the exterior. The
theorem is proved.

Corollary 3.4. paircr(G) can be replaced with oddcr(G) in theorem 2.2.

Since any graph with an odd crossing number of zero has a pairwise crossing
number of zero, the argument used for theorem 2.2 works for the odd crossing
number as well.

4. UPPER BOUNDS FOR cr(G) IN TERMS OF paircr(G) AND oddcer(G)
It is not difficult to find a bound for cr(G) in terms of paircr(G).
Theorem 4.1. cr(G) < (2pair2cr(G))
The following lemma is useful in proving the theorem.

Lemma 4.2. In the drawing of G with the fewest crossings, each pair of edges of
G intersect at most once.

I will show that if a pair of edges crosses more than once, then it is possible to
reduce the crossing number. There are two configurations that need to be taken into
account. For each configuration, the parts of the edges between the two intersection
points are swapped. The total number of crossings is decreased by two. Figure 4.1
shows the configurations and swaps. It is possible that this procedure will cause
an edge to cross itself, which is not allowed by the definition of a drawing given
in the introduction. However, it is not difficult to see that the self-intersections
can always be eliminated, and this decreases the crossing number. This proves the
lemma.

G can be drawn so that paircr(G) edges cross. In this drawing, n < 2paircr(G)
edges cross at least one other edge. When the edges are rearranged so that cr(G)
is minimized, the number of crossings is at most (g)
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FIGURE 4.1. If a pair of edges crosses more than once, then it
is always possible to reduce the crossing number. There are two
possibilities, depending on whether the crossings have the same or
opposite orientation.

Pach and Téth used theorem 3.2 to replace paircr(G) with odder(G) in the above
bound.

Theorem 4.3. cr(G) < (2°dd20r(0))

Consider a drawing of G with the minimal number of pairs of edges that cross
an odd number of times. Let G’ denote the subgraph consisting of the edges that
cross every edge an even number of times in this drawing. Then

(4.1) odder(G) > %(E(G) — B(G")).

Now use theorem 3.2 to redraw the graph so that no edge of G’ crosses any edge of
G. Among these redrawings, choose the one with the fewest crossings.

The procedure of Lemma, 4.2 never creates G’ edges if none existed originally, so
it can be applied again. This means that

(4.2) er(G) < (E (@) _2E (G')>.

Combining this with equation 4.1 yields the theorem.
Pavel Valtr [V05] improved theorem 4.1 slightly.

Theorem 4.4. cr(G) < O (%)

Let k = paircr(G). Choose a drawing of G so that the number of pairs of
crossing edges is minimized, and among such drawings, choose the one with the
smallest number of crossings. Call this drawing Dy. Let ¢ be an integer. Call an
edge light if it crosses at least one but at most ¢ other edges. Call an edge heavy if
it crosses more than ¢ other edges. Let [ and h be the number of light and heavy
edges, respectively. The proof will require the following lemma of M. Schaefer and
D. Stevankovi¢ [SS04].
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FIGURE 4.2. An example of the procedure of Schaefer and Ste-
vankovi¢ for reducing the number of crossings without introducing
any new pairs of crossing edges.

Lemma 4.5. If an edge e crosses at most t other edges and the total number of
crossings is at least 2¢, then it it is possible to redraw the graph with fewer crossings
without introducing any new pairs of crossing edges.

Consider the sequence of edges intersecting e. If one travels along e and keeps
a running total of the number of times each edge has been intersected, there are
2¢ possibilities mod 2. The number of running totals is one more than the number
of crossings, so it exceeds 2¢. By the pigeonhole principle, some pair of running
totals must be the same mod two. This means that there is a region of the curve in
which e crosses every edge an even number of times. Draw a small window around
this region not containing any additional crossings or endpoints. For each edge f
intersecting e, chose an orientation for f and number the intersections of f with
the window in order along f. The total number of intersections between f and the
window is divisible by four. Call this number 4n;. Apply a homeomorphic map
of the plane that sends the window to a disc and the segments of the f’s inside
the window to vertical line segments. Delete all of these segments. For each ¢ with
0 < i < ny, the connection between 4i + 2 and 4:¢ + 3 lies outside the window.
Move these inside the window by inverting them about the circle. Then reflect
them about the horizontal diameter of the circle. Now the edge f goes from 1 to 4
(inside) to 5 (outside) to 8 (inside) to 9 (outside) etc. The number of crossings of f
with e is now 2n¢, and no new crossings among edges other than e were introduced.
The lemma, is proved.

By the lemma, each light edge has at most 2! — 1 crossings. Then the number of
crossings between light edges is at most %(2‘5 —1). Now redraw the graph so that the
number of light-light crossings is minimized, the number of light-heavy crossings is
minimized subject to the previous condition, and the number of heavy-heavy edges
is minimized subject to the previous two conditions. Suppose that a heavy edge e
crossed a light edge f at least twice. Let n. and ny be the number of light edges
crossing e and f, respectively, in between the two crossings of e and f. If ny < n,,
then the number of heavy-light crossings can be decreased without changing the
number of light-light crossings by routing f along e and removing the two e — f
crossings. If ny > n., then the number of light-light crossings can be decreased by
routing e along f. Therefore a heavy edge and a light edge can cross only once.
Similarly, if two heavy edges had a crossing in common, then one could be routed
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FIGURE 5.1. This construction of Pelsmajer, Schaefer, and Ste-
vankovi¢ gives a family of graphs G with odder(G) < (\/Tg +
o(1))paircr(G).

along the other so as to decrease the number of heavy-light crossings or to keep

this number the same and decrease the number of heavy-heavy crossings.
Therefore the number of crossings involving heavy edges is at most (g) + hl <

h(h +1) < 2hk. The number of pairs of edges that cross is at least %, and it is also

at least 2. Therefore cr(G) = O(% +2'k). Taking t = 3 log, k yields the theorem.

5. OTHER INTERESTING RESULTS CONCERNING CROSSING NUMBERS

The rectilinear crossing number lincr(G) is the minimum number of drawings in
a graph with straight line edges. It is clear that lincr(G) > cr(G). It has also been
proved that lincr(G) = cr(G) if cr(G) is zero. However, as was shown by Bienstock
and Dean [BD93|, there are graphs with crossing number four and arbitrarily high
rectilinear crossing number.

The result of Hanani and Tutte that odder(G) = 0 implies cr(G) = 0, along
with the fact that each pair of edges crosses at most once in the drawing with the
minimum number of crossings, suggested that that odder(G) might always be equal
to cr(G). However, earlier this year, Pelsmajer, Schaefer, and Stevankovi¢ [PSS05]
showed that this is not the case.

Theorem 5.1. There exist graphs for which odder(G) < (@ + o(1))paircr(G).

The construction will be presented here; the proof that it works can be found in
[PSS05]. Let the vertices of the graph be ai,...,ak, b1,..., by, ¢1,. .. Cm, d1, ..., dp,

aly .., ah, i, ..., Ay, dy, ..., d,. Each a vertex to the corresponding o’

rmo
vertex, each b vertex to the corresponding b’ vertex, etc. Also connect consecutive
a vertices to each other, consecutive a’ vertices to each other, consecutive b vertices
to each other, etc. Connect ax to by, by to ¢1, ¢ to di, and d, to a;. Finally,

connect aj to d}, d), to ¢}, ¢/, to b}, and b to aj.
Lemma 5.2. If k <1 <n <m and k +n > m, then for sufficiently large n the

crossing number and pair crossing number are both kn + Im, and the odd crossing
number is In + km.

See[PSS05] for a proof.

Take | = n, k = |n ‘/32’”, and m = n‘@’lj. Then the crossing number and

pairwise crossing number are both n ( [n¥3=1) 4 Ln@]) > v/3n? — 2, while
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the odd crossing number is Ln@J Ln@J < 2m?2. This proves that there are
graphs whose pairwise crossing number exceeds their odd crossing number. It is
still not known whether the pairwise crossing number is always equal to the crossing
number.

Garey and Johnson [GJ83] showed that the problem of determining whether
cr(G) is less than an integer K is NP-complete. Pach and Téth [PTO00] proved
that the same is true with cr(G) replaced by odder(G). They also showed that the
problem of determining whether paircr(G) < K is NP-hard.

[BD93]
[CH34]
(G183
[PT00]
[PSS05]
[SS04]

[T70]
[VO5]
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