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Abstract. This is a survey paper of recent results about the problem of counting 

number of incidences between points and curves in the plane. Also this discusses some 

results for this problem in higher dimensions, and tries to extend crossing lemma in 

higher dimensions. 

Unit distance problem 

Consider a set P of n points in the plane. The question is that, what 

is the maximum number of pairs of points in P that have unit distance. 

The history of this problem has been begun with Erdos’s paper [9] in 

1946. He found the bound O(n3/2) for this problem. His proof was on the 

base of this fact that for two points with unit distance, there are at most 

two points with unit distance form both of them. In fact, if we consider 

the graph with n points as vertices and edges as pairs of unit distance 

points, this graph does not contain K2,3 as a subgraph. Thus this bound 

is an immediate consequence of Turan theorem in extremal graph theory 

[10]. 

Let’s look at the problem in another viewpoint. Consider a point in 

the plane. Set of all points that have unit distant from this point consist 
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a circle with unit radius. So a point has unit distance with this point 

if it is on this circle. Therefore, in order to solve over problem, we can 

consider all the circles with radius one and center of n points and count 

the number of point­circle incidences. 

Incidence problems 

There are other problems, that are reduced to incidence problems. For 

example, consider these two problems: 

What is the maximum number of unit area triangles determined by n 

points in the plane? 

What is the maximum number of unit perimeter triangles determined 

by n points in the plane? 

For the first problem, notice that in a triangle with area one and fixed 

two vertices the third vertex is on the union of two lines. Also for the 

second, in a unit perimeter triangle with fixed two vertices, the third 

vertex is on an ellipse. Thus, these problems reduced to point­line and 

point­ellipse incidence problems. It means, we have a set of points and a 

set of curves and want to count the number of pairs of point and curve 

in which the point is on the curve. 

Point­line incidence 

The first tight upper bound for these problems, was given by Sze­

meredi and Trotter in [17] for point­line incidence in plane. After that, 

in 1990, Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl used another 

technique and proved that bound [6]. But in 1997, Szekely found a very 

simple proof for this theorem. His proof is based on a key lemma of Ajtai 

[2] and Leighton [11]. 

2 



Lemma 1. Let G be simple graph drawn in the plane, then either e = 

O(v) or Cr(G) = Ω(e3/v2), where e =| E(G) , v = V (G) and Cr(G)| | |
is the number of crossing of edges in the drawing. 

This lemma is called crossing lemma and there is a stronger version 

of that, due to Szekely [16] 

Lemma 2. Let G be multigraph drawn in the plane, with maximal edge­

multiplicity M. Then either e = O(Mv) or Cr(G) = Ω(e3/Mv2). 

Let’s back to the Erdos’s problem and use Szekely technique. We 

have n points and n circles around them with radius one, and want to 

count the number of point­circle incidences. Form a graph G with n 

points as vertices and pairs of consecutive points on circles as edges. In 

this graph number of edges is equal to I, number of incidences, and the 

multiplicity of any edge is at most two. Also the number of crosses is at 

most 2n(n − 1)/2 < n2 . So we have either I = O(n), or n2 > Cr(G) = 

Ω(I3/2n2) and then the number of unit distances is I = O(n4/3), which is 

the bound of Spencer, Szemeredi and Trotter [15] in 1984, and is better 

than Erdos’s bound. 

So using crossing lemma we could count the number of point­circle 

incidences in the special case that circles have unit radios. Using these 

technique we can count the number of incidences in other cases. For ex­

ample consider the point­line incidence, we get the theorem of Szemeredi 

and Trotter [17]. 

Theorem 1.Consider set of n points and l lines in the plane, then the 

number of point­line incidences is 

O(n 2/3l2/3 + n + l). 
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This theorem can be proved exactly by the same idea as before, 

Szekely’s method. The only point is that, for any two points there is 

at most one line passes through them, so the graph associated to this 

problem is simple and we can use the first version of crossing lemma. 

This point leads us to prove a more general theorem. In fact, instead 

of lines we can consider set of pseudo­lines, which is set of curves in the 

plane such that intersection of any two curves is at most one point. In 

this case we get the same bound as above. Notice that, this upper bound 

is tight. For example see Elekes in [8]. 

Point­circle incidence 

Let’s consider point­circle incidence in general case and apply this idea. 

Since for every two points there are infinity many circles pass through 

them we have not any bound on the edge­multiplicity of the graph. So 

we can’t use Szekely’s method directly. Now the idea is that, we can 

cut circles into some arcs such that any two arcs cross at most once. 

In fact Tamaki and Tokuyama in [18] show that any set of l circles can 

be cut into O(l5/3) pseudo­segments. Using this bound and Szekely’s 
2/3l2/3technique we find the upper bound O(n + n + l5/3) for the number 

of point­circle incidences. But this bound is not tight. Now, the best 
2/3l2/3 + n6/11l9/11κ(nbound for point­circle incidence is O(n 3/l) + n + l), 

where κ(n) = (log n)O(α2(n)), and where α(n) is the inverse of Ackermann 

function [1], [3]. This bound comes from improving the bound of Tamaki 

and Tokuyama for the number of cuts of circles into pseudo­segments. 

Curves with k degree of freedom 

Now, consider ellipses instead of circles or curves of degree three or 

more. Two ellipses can have four points in their intersection, so the 

problem for ellipses is more complicated. In order to solve these problem, 
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Pach and sharir stated a definition for curves in [13]:


Definition. Let C be a given class of simple curves in the plane. We say


that C has k degree of freedom and multiplicity­type s if


(i) for any k points there are at most s curves of C passing through all 

of them, 

(ii) any pair of curves from C intersect in at most s points. 

Their idea is that for constructing a graph we should not just consid­

ering consecutive pairs of points on curves, but add some edges between 

every two points that, there are at most k − 1 points between them on 

the curve. By this construction we can consider this fact that every k 

points specify finitely many curves, not just two points. But in this case, 

we don’t have any bound on M , the multiplicity­edge of graph. The tech­

nique is the same as that for circles. We can partition vertices and using 

crossing lemma in each part after deleting some edges in order to have a 

bound on multiplicity in each part. By this technique they could prove 

the following theorem in [13]. 

Theorem 2. let P be a set of n points and C be a set of l simple curves 

all lying in the plane. If C has k degrees of freedom and multiplicity­type 

s, then the number of point­curve incidences is 

k/(2k−1)l(2k−2)/(2k−1) + n + l).O(n 

Notice that this upper bound in not tight. For example set of circles 

have 3 degree of freedom. So we get the bound O(n3/5l4/5 + n + l) which 

is not tight. 

Incidences in higher dimensions 

It seems that by theorem 2 we have an admissible bound for incidence 

problems in plane. But a natural extension of this problem is the inci­

dence problems in higher dimensions. For example incidences between 
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hyperplanes or spheres and points in Rd, also point­curve incidences in 

higher dimensions. 

point­hyperplane incidence 

The question is that, what’s the maximum number of incidences for 

a set of n points and l hyperplanes. Notice that, without any restriction 

on points and hyperplanes we can have nl incidences, because we can 

consider n points on a line such that all hyperplanes pass through that 

line. Now in order to have some restrictions, we can assume that no 

three points are collinear, or no three hyperplanes have a line in their 

intersection. In fact, these conditions are some assumption in order to 

not have any Kr,r as a subgraph of incidence graph for large numbers 

r. Brass and Knauer [5] show that the number of incidences between n 

points and l hyperplanes in Rd is 

O((n + l) log(n + l) + nd/(d+1)ld/(d+1) log(nl)) 

by the condition that their incidence graph doesn’t contain Kr,r for a 

fixed r. 

Point and unit spheres incidence in R3 

There’s a technique for solving incidence problems that is partition. 

For example, we can prove the theorem of Szemeredi and Trotter by this 

method. Let’s solve the problem of incidence for unit spheres by this 

technique. This problem is related to the problem of maximum number 

of unit distances in an arrangement of a point set in three dimension. 

We know that for three points in the space there are at most two unit 

spheres passing through them. On the other word, the incidence graph 

does not contain K3,3, so by Turan’s theorem [10] number of incidences 

is O(nl2/3 + l). But this bound is not tight, and the idea is that we can 
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partition the space into some parts and use this bound in each partition. 

In fact, Clarkson et al. in [6] show that we can partition the space into 

O(r3β(r)) cells such that, each cell crosses at most l/r spheres, where 

β(r) = 2O(α2(r)). Now apply the above bound in any partition. If there 

are ni points in the i − th partition, then the number of incidences in 

this part is O(ni(l/r)
2/3 + l/r), and sum over all cells, we get the number 

of incidences is O(n(l/r)2/3 + lr2β(r)). Now choose r = n3/8/l1/8 when 

l1/3 ≤ n ≤ l3, we find the bound O(n3/4l3/4β(n + l) + n + l). Also, if n is 

not in that range, one can easily check that this bound works. 

Point­cylinder incidence 

We have shown that the maximum number of unit area triangles with 

vertices in a set of n points in the plane is related to point­line problem. 

Now consider this problem in three dimension. For a unit area triangle 

in space such that two vertices of that, are fixed, the third vertex can be 

on a cylinder. Thus this problem in three dimensions is related to point­

cylinder incidence problem. But notice that, this problem without any 

restriction is trivial, same as point­plane incidence, all cylinders can have 

a line in their intersection. One restriction is to assume that, the axis of 

any cylinder passes through origin. In this case, since every cylinder is set 

of points satisfying a degree two polynomial, every three cylinder have at 

most eight points in their intersection. It means that the incidence graph 

for cylinders contains no K9,3, so by Turan’s theorem [10], for n points 

and l cylinders we have at most O(nl8/9 + l) or O(n2/3l + n) incidences. 

It seems that these bounds can be better by the partition idea. 

point­line incidence in higher dimensions 

Consider the point­line incidence in three dimension. Since the bound 

of Szemeredi and Trotter [17] for point­line incidence in plane is tight, 
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the bound for maximum number of point­line incidences in three space, 

is at list O(n2/3l2/3 + n + l). On the other hand, for every set of points 

and lines in space, we can project them in a general plane. In this case, 

we have the same number of points, lines and incidences, thus we have 

exactly the same bound for point­line incidences in space as in plane. 

Sharir and Welzl mentioned this point in [14], and tried to set up this 

problem in another way. They used the concept of joint, considered a 

weight for each joint, and proved an upper bound for the sum of weights. 

Let P be a set of n points and L set of l lines in space. For a point p ∈ P 

define Lp, set of lines in L pass through p. We call p a joint of L, if Lp 

contains at least three non­coplanar lines, and let JL the set of all joints. 

Also let cp, denote the minimum number of planes that contain all lines 

in Lp. In fact, a point p is a joint iff cp ≥ 2. Now define Ic(P, L) to be 

the sum of cp’s over all points p ∈ P . Sharir and Welzl proved that the 

incidence number between JL and L is O(l5/3), and used this fact to show 

that Ic(P, L) = O(n4/7l5/7 + n + l). 

Another way to set up this problem is to suppose each line forms a fixed 

angle with the xy­plane. In this case, they proved number of incidences 

is 

O(min{n 3/4l1/2κ(n), n 4/7l5/7} + n + l). 

Notice that both of these bounds are smaller than the bound of Szemeredi 

and Trotter. 

Point­circle incidence in higher dimensions 

Aronov, Koltun and Sharir in [4], stated the problem of point­circle 

incidence in three and higher dimensions. First of all, they proved the 

number of incidences between n points and l circles in R3 is 

O(n 2/3l2/3 + l3/2κ(l) + n). 
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The idea of their proof is that, for a circle c that has many intersections 

with other circles, we can consider some spheres pass through c and cover 

all those circles that have intersection with it. Now project each of these 

spheres onto a plane by a general point on that sphere. We get a set of 

points and circles in the plane and we can apply the bound of point­circle 

incidence for each of these planes. Sum over all these spheres, we get the 

upper bound O(n2/3l2/3 + l3/2κ(l) + n) for the number of incidences. This 

bound is optimal when n ≥ l5/4κ3/2(l). For smaller values of n, they apply 

another method. In fact, they used the duality technique. Suppose no 

pair of circles are coplanar, and apply the standard duality transform that 

maps each point to a plane, and each plane to a point. This transform 

preserve incidence. Now for each circle consider its plane, and associate 

to each circle, the dual of this plane. So we receive a point­plane incidence 

problem in dual space. Applying the partition method, we can cut the 

space into O(r3) simplices, such that each simplex is intersected by at 

most n/r planes of the dual of points. Now apply the previous bound 
6/11l9/11κ(nin each simplex we get the bound O(n 3/l) + n2/3l2/3 + n + l). 

They showed that, both of these bound works for circles in Rd, for any 

d ≥ 3. Also they found a bound for number of incidences between a set 

of n points and l convex curves that belongs to a two dimensional plane. 

Theorem 3. Let a collection of n points and l convex plane curves in 

Rd, such that, no two of which lie in a common 2­plane. Then for any 

d ≥ 3, the number of point­curve incidences is 

O(n 4/7l17/21 + n 2/3l2/3 + n + l). 

Extremal problems for geometric hypergraphs 

One of the most useful methods in solving incidence problems is cross­

ing lemma, that can be used for incidence problems in plane, but we 
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don’t have such lemma in higher dimensions. It seems that such lemmas 

can be useful for proving some results of incidence problems in higher 

dimensions. Dey and Pach, in [7], have defined geometric hypergraphs, 

and tried to generalize crossing lemma. 

A d­dimensional geometric r­hypergraph, Hd is a pair (V, E), where r 

V is a set of points in general position in Rd, and E is a set of closed 

(r− 1)­dimensional simplices induced by some r­tuples of V . The sets V 

and E are called the vertex set and edge set of Hr
d, respectively. 

Now notice that the notion of crossing is not clear in higher dimen­

sions. For example if two edge of two triangles in space cross, are the 

triangles cross or not? In order to clarify the terminology, they stated 

this definition: 

k simplices are said to have a nontrivial intersection, if their relative 

interiors have a point in common. If, in addition, the k simplices are 

vertex disjoint, then they are said to cross. Notice that, if every pair of k 

simplices, has a nontrivial intersection, it does not imply that all of them 

do. They proved the following theorems: 

Theorem 4. Let E be any set of d­dimensional simplices induced by an 

n­element point set V ⊆ Rd . If E has no two crossing elements, then 

E |= Θ(nd).| 

Theorem 5. Let E be a family of (d− 1)­dimensional simplices induced 

by an n­element point set V ⊆ Rd, where d, k > 1. If E has no k pairwise 

crossing members, then | E = O(nd−(1/d)k−2 
).|

Other than these bounds they could found some upper bounds for the 

number of crossing edges in any d­dimensional geometric r­hypergraph. 
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