
Appendix B

Finite difference methods for
wave equations

Many types of numerical methods exist for computing solutions to wave
equations – finite differences are the simplest, though often not the most
accurate ones.

Consider for illustration the 1D time-dependent problem

∂2u
m(x)

∂t2
=
∂2u

+ f(x, t), x ∈ [0, 1],
∂x2

with smooth f(x, t), and, say, zero initial conditions. The simplest finite
difference scheme for this equation is set up as follows:

• Space is discretized over N + 1 points as xj = j∆x with ∆x = 1 and
N

j = 0, . . . , N .

• Time is discretized as tn = n∆t with n = 0, 1, 2, . . .. Call unj the com-
puted approximation to u(xj, tn). (In this appendix, n is a superscript.)

• The centered finite difference formula for the second-order spatial deriva-
tive is

∂2u

∂x2
(xj, tn) =

unj+1 − 2unj + unj−1
+O((∆x)2),

(∆x)2

provided u is sufficiently smooth – the O(·) notation hides a multiplica-
tive constant proportional to ∂4u/∂x4.
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• Similarly, the centered finite difference formula for the second-order
time derivative is

∂2u

∂t2
(xj, tn) =

un+1
j − 2unj + un−1

j
+O((∆t)2),

(∆t)2

provided u is sufficiently smooth.

• Multiplication by m(x) is realized by multiplication on the grid by
m(xj). Gather all the discrete operators to get the discrete wave equa-
tion.

• The wave equation is then solved by marching: assume that the values
of un−1

j and unj are known for all j, then isolate un+1
j in the expression

of the discrete wave equation.

Dirichlet boundary conditions are implemented by fixing. e.g., u0 = a.
Neumann conditions involve a finite difference, such as u1−u0

∆x
= a. The more

accurate, centered difference approximation u1−u−1 = a with a ghost node at
2∆x

u−1 can also be used, provided the discrete wave equation is evaluated one
more time at x0 to close the resulting system. In 1D the absorbing boundary
condition has the explicit form 1∂tu±∂xu = 0 for left (-) and right-going (+)

c

waves respectively, and can be implemented with adequate differences (such
as upwind in space and forward in time).

The grid spacing ∆x is typically chosen as a small fraction of the rep-
resentative wavelength in the solution. The time step ∆t is limited by the
CFL condition ∆t ≤ ∆x /maxx c(x), and is typically taken to be a fraction
thereof.

In two spatial dimensions, the simplest discrete Laplacian is the 5-point
stencil which combines the two 3-point centered schemes in x and in y. Its
accuracy is also O(max{∆x)2, (∆y)2}). Designing good absorbing boundary
conditions is a somewhat difficult problem that has a long history. The
currently most popular solution to this problem is to slightly expand the
computational domain using an absorbing, perfectly-matched layer (PML).

More accurate schemes can be obtained from higher-order finite differ-
ences. Low-order schemes such as the one explained above typically suffer
from unacceptable numerical dispersion at large times. If accuracy is a big
concern, spectral methods (spectral elements, Chebyshev polynomials, etc.)
are by far the best way to solve wave equations numerically with a controlled,
small number of points per wavelength.
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