Course 18.327 and 1.130 Wavelets and Filter Banks

Discrete-time filters: convolution; Fourier transform; lowpass and highpass filters

Discrete Time Filters

$$\begin{array}{c|c}
\text{Input} & & \text{Output} \\
\hline
x[n] & & y[n]
\end{array}$$

n denotes the time variable: $\{..., -2, -1, 0, 1, 2, ...\}$ x[n] denotes the sequence of input values: $\{..., x[-2], x[-1], x[0], x[1], x[2], ...\}$ y[n] denotes the sequence of output values: $\{..., y[-2], y[-1], y[0], y[1], y[2], ...\}$

Assume that

a) the principle of superposition holds ⇔ system is linear, i.e. combining any two inputs in the form
 Ax₁[n] + Bx₂[n]
 results in an output of the form
 Ay₁[n] + By₂[n]

b) the behavior of the system does not change with time, i.e. a delayed version of any input

$$x_d[n] = x[n - d]$$

produces an output with a corresponding delay
 $y_d[n] = y[n - d]$

- Under these conditions, the system can be characterized by its response, h[n], to a unit impulse, $\delta[n]$, which is applied at time n = 0,
- i.e. the particular input

$$x[n] = \delta[n]$$

produces the output

Unit **Impulse**

Impulse Response

The general input

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

will thus produce the output

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Convolution sum

Fourier Transform

Discrete time Fourier transform

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-i\omega n}$$

Inverse

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{i\omega n} d\omega$$

5

Frequency Response

Suppose that we have the particular input

$$x[n] = e^{i\omega n}$$
What is the output?

 $e^{i\omega n}$
 $H(\omega) e^{i\omega}$

$$y[n] = \sum_{k} h[k] x [n - k]$$

$$= e^{i\omega n} \sum_{k} h[k] e^{-i\omega k}$$

$$\downarrow^{k} 4243$$

$$H(\omega)$$
Frequency Response

Convolution Theorem

A general input

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{i\omega n} d\omega$$

will thus produce the output

$$y[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) H(\omega) e^{i\omega n} d\omega \rightarrow Y(\omega) = X(\omega) H(\omega)$$

$$Y(\omega) = X(\omega) H(\omega)$$

$$Y(\omega) = X(\omega) H(\omega)$$

Convolution

Convolution of sequences x[n] and h[n] is denoted by $h[n] * y[n] = \sum y[k] h[n - k] = y[n]$ (say)

 $h[n] * x[n] = \sum_{k} x[k] h[n - k] = y[n]$ (say)

7

Matrix form:

Toeplitz matrix

g

Convolution is the result of multiplying polynomials:

$$(... + h[-1]z + h[0] + h[1]z^{-1} + ...) (... + x[-1]z + x[0] + x[1]z^{-1} + ...) = (... + y[-1]z + y[0] + y[1]z^{-1} + ...)$$

Example:

		3	1	-5 2
			2	4 -1
		-3	-1	5 -2
	12	4	-20	8 0
6	2	-10	4	0 0
6	14	-9	-17	13 -2
	↑ z-4	↑ 3	↑ z -2	↑ ↑ z ⁻¹ z ⁰

Discrete Time Filters (summary)

Discrete Time:

$$\begin{array}{c|c}
x[n] & y[n] \\
\hline
y[n] & x[k] & y[n]
\end{array}$$

$$y[n] + \sum_{k} x[k] + [n-k] \quad (Convolution)$$

Discrete -time Fourier transform

$$X(\omega) = \sum_{n} x[n] e^{-i\omega n}$$

Frequency domain representation

$$Y(\omega) = H(\dot{\omega}) \cdot X(\omega)$$
 (Convolution theorem)

Toeplitz Matrix representation:

Filter is causal if y[n] does not depend on future values of x[n].

Causal filters have h[n] = 0 for n < 0.

11

Filters

a) Lowpass filter example:

$$y[n] = \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$$

Filter representation:

$$\begin{array}{c|c} x[n] & y[n] & y[n] = \sum\limits_{k} x[k] \ h \ [n-k] \end{array}$$

Impulse response is

Frequency Response is

$$H(\omega) = \sum_{k} h[k]e^{-i\omega k}$$

=
$$\frac{1}{2}$$
 + $\frac{1}{2}$ e^{-i ω}

Rewrite as $H(\omega) = |H(\omega)| e^{i\phi(\omega)}$

$$H(\omega) = \cos(\omega/2) e^{-i\omega/2}$$
 ; $-\pi \le \omega \le \pi$

13

b) Highpass Filter Example

$$y[n] = \frac{1}{2} x[n] - \frac{1}{2} x[n-1]$$

Impulse response is

Frequency response is

$$H(\omega) = \frac{1}{2} - \frac{1}{2} e^{-i\omega}$$
$$= i \sin(\omega/2) e^{-i\omega/2}$$

$$= \bigvee_{\omega=0}^{\infty} \sin(\omega/2) \left| e^{-i(\pi/2 + \omega/2)} ; -\pi \le \omega < 0 \right|$$

$$= \bigvee_{\omega=0}^{\infty} \sin(\omega/2) \left| e^{i(\pi/2 - \omega/2)} ; 0 < \omega \le \pi \right|$$

