Course 18.327 and 1.130
Wavelets and Filter Banks

Refinement Equation: Iterative and
Recursive Solution Techniques;
Infinite Product Formula; Filter Bank
Approach for Computing Scaling
Functions and Wavelets

Solution of the Refinement Equation

o0 = 2% nolk] $(21-K)

First, note that the solution to this equation may not
always exist! The existence of the solution will depend
on the discrete-time filter h[k].
If the solution does exist, it is unlikely that ¢(t) will have
a closed form solution. The solution is also unlikely to
be smooth. We will see, however, that if hy[n] is FIR with
ho[n] = 0 outside 0<n<N
then ¢(t) has compact support:
¢(t) = O outside O<t<N




Approach 1 lterate the box function  ¢(t)

¢O(t) = box function on [0, 1]

6D (1) = 22 holki 40 (2t -K)

If the iteration converges, the solution will be given
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This is known as the cascade algorithm.

Example: suppose hy[k] = {¥4, Y2, ¥4}
$U (1) = 1 g0(2t) + ¢0(2t—1) + ¥ ¢0 (2t -2)
Then
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Converges to the hat function on [0, 2]




Approach 2 Use recursion
First solve for the values of ¢(t) at integer values of t.

Then solve for ¢(t) at half integer values, then at quarter
integer values and so on.

This gives us a set of discrete values of the scaling
function at all dyadic points t = n/2.

At integer points:

o(n) = zkzN: oK1 & (20~ K

Suppose N=3
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¢(0) = 22 ho[k] ¢(-k)
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6(1) = 2% holk] $(2:)
6@2) = 2% holk] 4(4)
63) = 22 holkl $(6-K)

Using the fact that ¢(n) =0 forn<0O0and n >N, we
can write this in matrix form as

¢(0) ho[0] ¢(0)
o) | = 5 | hol2] hol1] holO] (1)
o(2) ho[3] hol2] hol[1] o(2)

¢(3) ho[3] o(3)




Notice that this is an eigenvalue problem
AD = AD

where the eigenvector is the vector of scaling function
values at integer points and the eigenvalueis A = 1.

Note about normalization:

Since (A - Al) ® = 0 has anon-unique solution,

we must choose an appropriate normalization for @
The correct normalization is

o) = 1

This comes from the fact that we need to satisfy the
partition of unity condition, X ¢(x-n) = 1.
n

At half integer points:
N
¢ (n/2) = 2k2 holk] ¢ (n-k)
=0

So, for N = 3, we have

B(1/2) ho[1] ho[0] 4(0) |
0@3/2) | = 2 | ho[3] he[2] hg[1] hy[O] $(1)
#(5/2)
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Scaling Relation and Wavelet Equation
in Frequency Domain

o) = 22 holk] ¢(2t k)

]?<I>(t)e'iQt dt = 23 holK] j'o<l>(2t — k) e'dt
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$0) = f 8(t) dt = 1 (Areais normalized to 1)

10




So

$(Q) = 11 HO(%) Infinite Product Formula
j=1

Similarly
w(t) = 22 [k (2t - K)

leads to R ~
W@ = H(2) ¢ (2)

Desirable properties for Hy(w):

« H(0) = 1,s0that $(0) = 0
* H(w) should decay to zeroas ® > &,

sothat [ [$(@)|*d @<
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Computation of the Scaling Function and
Wavelet — Filter Bank Approach

Dl 12 P{Ho(o)p—» i
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X,[Nn]

Normalize so that X ho[n] = 1.
n
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I. Supposeyy[n] = §[n] and x,[n] = O.
Yo(w) = 1
Yi(@) = Yo(2w) Hy(w)
Yy(@) = Y;(20) Ho(w)
Ya(@) = Y,(20) Ho(w)
After K iterations:

Ho(w)
Ho(2@)Ho(w)
Ho(4®) Ho(20) Ho(w)

K-1
Yi(@) = T Hq(2w)

What happens to the sampling period?
Sampling period at input = T, = 1 (say)
Sampling period at output = T, = %X

13

Treat the output as samples of a continuous time
signal, y}i(t), with sampling period Y2K:
ykIn] =Zye(n/2K)

=>Y¢(w) = QCK P0) ; w<o0<Tn
(Y(t) is chosen to be bandlimited)

Replace 2X® with Q:
N K-1 K .
YR = Y2k = ILH@Q/2¢%) = ITH(Q/21)
=l J:
2k < Q < 2XKg

So
lim \?;(Q) = TTHy(Q/2) = $(Q)
k—0 =1
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= | 2K y«[n] converges to the samples of the scaling
function, ¢(t), taken att = n/2K.

ii. Supposeyy[n] = 0, xy[n] = d[n] and all other x,[n] =0
K-2
Yk(@) = Hy(2"0) I Hy(2w)

Then

N K-2
YRQ) = Yi(@/29) = Hy($) TT Hy(@/2

K-1
= Hl(%) j1=_11 Ho(%'%
So

lim Y5(@) = Hy(@2) $ (@2) = W)

=| 2Ky«[n] converges to the samples of the wavelet,

w(t), taken att = n/2K.

Support of the Scaling Function

Yia[n] ') V[:n] heln] y[Nn]

length {v[n]} = 2elength {y,4[n]} - 1
Suppose that

ho[n] = 0 forn<0 and n >N
=length {y,[n]} = length {v[n]} + length {hy[n]} -1

= 2-<length {y,4[n]} + N-1
Solve the recursion with length {y,[n]} = 1
So
length {y,[n]} = 2K-1)N+1




i.e. length {y2(t)} = Ty .length {y[n]}
_ (@K-1)N+1

-7 Q)
= N - Nz;i
lim K—> o
length {¢(t)} = N v/“
0 N t

So the scaling function is supported on the interval [0, N]
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Matlab Example 6

Generation of orthogonal scaling
functions and wavelets

By Inverse DWT
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By Recursion
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Matlab Example 7

Generation of biorthogonal scaling
functions and wavelets.

MATLAB M-File

Primary Daub 9/7 Pair
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Dual Daub 9/7 Pair
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