# Course 18.327 and 1.130 Wavelets and Filter Banks

Refinement Equation: Iterative and Recursive Solution Techniques; Infinite Product Formula; Filter Bank Approach for Computing Scaling Functions and Wavelets

### **Solution of the Refinement Equation**

$$\phi(t) = 2\sum_{k=0}^{N} h_0[k] \phi(2t-k)$$

First, note that the solution to this equation may not always exist! The existence of the solution will depend on the discrete-time filter  $h_0[k]$ .

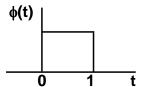
If the solution does exist, it is unlikely that  $\phi(t)$  will have a closed form solution. The solution is also unlikely to be smooth. We will see, however, that if  $h_0[n]$  is FIR with

$$h_0[n] = 0$$
 outside  $0 \le n \le N$ 

then  $\phi(t)$  has compact support:

$$\phi(t) = 0$$
 outside  $0 < t < N$ 

Approach 1 Iterate the box function

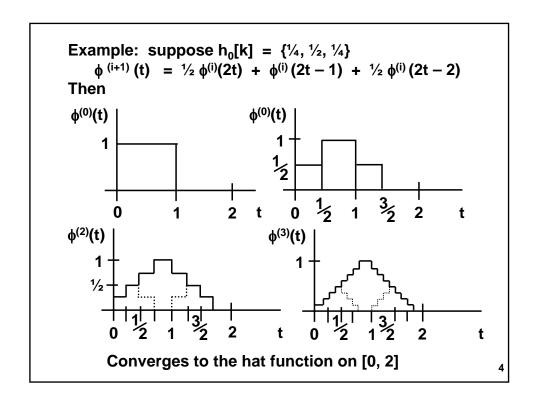


$$\phi^{(0)}(t)$$
 = box function on [0, 1]

$$\phi^{(i+1)}(t) = 2\sum_{k=0}^{N} h_0[k] \phi^{(i)}(2t-k)$$

If the iteration converges, the solution will be given by  $_{\text{lim}}\quad \varphi^{(i)}(t)$ 

This is known as the cascade algorithm.



#### Approach 2 Use recursion

First solve for the values of  $\phi(t)$  at integer values of t.

Then solve for  $\phi(t)$  at half integer values, then at quarter integer values and so on.

This gives us a set of discrete values of the scaling function at all dyadic points  $t = n/2^i$ .

At integer points:

$$\phi(n) = 2 \sum_{k=0}^{N} h_0[k] \phi (2n - k)$$

5

#### Suppose N = 3

$$\phi(0) = 2 \sum_{k=0}^{3} h_0[k] \phi(-k)$$

$$\phi(1) = 2 \sum_{k=0}^{3} h_0[k] \phi(2-k)$$

$$\phi(2) = 2 \sum_{k=0}^{3} h_0[k] \phi(4-k)$$

$$\phi(3) = 2 \sum_{k=0}^{3} h_0[k] \phi(6-k)$$

Using the fact that  $\phi(n) = 0$  for n < 0 and n > N, we can write this in matrix form as

$$\begin{vmatrix} \phi(0) \\ \phi(1) \\ \phi(2) \\ \phi(3) \end{vmatrix} = 2 \begin{vmatrix} h_0[0] \\ h_0[2] & h_0[1] & h_0[0] \\ h_0[3] & h_0[2] & h_0[1] \\ h_0[3] & h_0[3] \end{vmatrix} \begin{vmatrix} \phi(0) \\ \phi(1) \\ \phi(2) \\ \phi(3) \end{vmatrix}$$

Notice that this is an eigenvalue problem

$$\lambda \Phi = A\Phi$$

where the eigenvector is the vector of scaling function values at integer points and the eigenvalue is  $\lambda = 1$ .

Note about normalization:

Since (A -  $\lambda$ I)  $\Phi$  = 0 has a non-unique solution, we must choose an appropriate normalization for  $\Phi$  The correct normalization is

$$\sum_{n} \phi(n) = 1$$

This comes from the fact that we need to satisfy the partition of unity condition,  $\sum_{n} \phi(x-n) = 1$ .

7

At half integer points:

$$\phi$$
 (n/2) =  $2\sum_{k=0}^{N} h_0[k] \phi$  (n-k)

So, for N = 3, we have

Q

## Scaling Relation and Wavelet Equation in Frequency Domain

$$\begin{split} \varphi(t) &= 2 \sum_{k} h_0[k] \, \varphi(2t-k) \\ \int_{-\infty}^{\infty} & \varphi(t) e^{-i\Omega t} \, dt &= 2 \sum_{k} h_0[k] \int_{-\infty}^{\infty} & \varphi(2t-k) \, e^{-i\Omega t} \, dt \\ &= 2 \sum_{k} h_0[k] \, \frac{1}{2} \int_{-\infty}^{\infty} & \varphi(\tau) e^{-i\Omega(\tau+k)/2} \, d\tau \\ &= 2 \sum_{k} h_0[k] e^{-i\Omega k/2} \int_{-\infty}^{\infty} & \varphi(\tau) \, e^{-i\Omega \tau/2} \, d\tau \end{split}$$

i.e. 
$$\hat{\phi}(\Omega) = H_0(\frac{\Omega}{2}) \cdot \hat{\phi}(\frac{\Omega}{2})$$

$$= H_0(\frac{\Omega}{2}) \cdot H_0(\frac{\Omega}{4}) \cdot \hat{\phi}(\frac{\Omega}{4})$$

$$= N \prod_{(i,j)=1}^{\infty} H_0(\frac{\Omega}{2^{ij}}) \bigwedge_{(i,j)=1}^{\infty} (0)$$

$$\hat{\phi}(0) = \int_{-\infty}^{\infty} \phi(t) dt = 1 \text{ (Area is normalized to 1)}$$

$$\oint_{j=1}^{\Lambda} H_0(\underline{\Omega}) = \prod_{j=1}^{\infty} H_0(\underline{\Omega}) \quad \text{Inf}$$

**Infinite Product Formula** 

**Similarly** 

$$w(t) = 2 \sum_{k} h_1[k] \phi(2t - k)$$

leads to

$$\mathring{\mathbf{w}}(\Omega) = \mathsf{H}_1\left(\frac{\Omega}{2}\right) \mathring{\mathbf{o}} \left(\frac{\Omega}{2}\right)$$

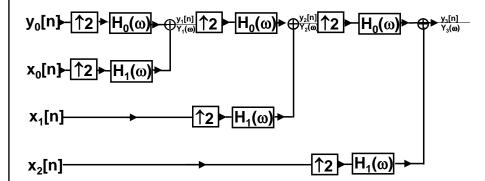
Desirable properties for  $H_0(\omega)$ :

- H(0) = 1, so that  $\hat{\phi}(0) = 0$
- $H(\omega)$  should decay to zero as  $\omega \to \pi$ ,

so that 
$$\int_{-\infty}^{\infty} |\hat{\phi}(\Omega)|^2 d\Omega < \infty$$

11

## Computation of the Scaling Function and Wavelet – Filter Bank Approach



Normalize so that  $\sum_{n} h_0[n] = 1$ .

i. Suppose 
$$y_0[n] = \delta[n]$$
 and  $x_k[n] = 0$ .

$$Y_0(\omega) = 1$$

$$Y_1(\omega) = Y_0(2\omega) H_0(\omega) = H_0(\omega)$$

$$Y_2(\omega) = Y_1(2\omega) H_0(\omega) = H_0(2\omega)H_0(\omega)$$

$$Y_3(\omega) = Y_2(2\omega) H_0(\omega) = H_0(4\omega) H_0(2\omega) H_0(\omega)$$

After K iterations:

$$Y_K(\omega) = \prod_{k=0}^{K-1} H_0(2^k \omega)$$

What happens to the sampling period?

Sampling period at input =  $T_0 = 1$  (say)

Sampling period at output =  $T_K = \frac{1}{2}K$ 

13

Treat the output as samples of a continuous time signal,  $y_{\kappa}^{c}(t)$ , with sampling period  $\frac{1}{2}^{\kappa}$ :

$$y_{K}[n] = \frac{1}{2^{K}}y_{K}^{c}(n/2^{K})$$

$$\Rightarrow Y_{K}(\omega) = Y_{K}^{c}(2^{K}\omega) \quad ; \quad -\pi \leq \omega \leq \pi$$
 ( $Y_{K}^{c}(t)$  is chosen to be bandlimited)

Replace  $2^K \omega$  with  $\Omega$ :

So

$$\lim_{k\to\infty} {\displaystyle \mathop{\Upsilon_{K}^{c}}}(\Omega) \; = \; \mathop{\textstyle\prod}_{j=1}^{\infty} {\displaystyle \mathop{H_{0}}}(\; \Omega/2^{j}) \; = \; \mathop{\varphi(\Omega)}^{\wedge}$$

- $\Rightarrow$  2<sup>K</sup> y<sub>K</sub>[n] converges to the samples of the scaling function,  $\phi(t)$ , taken at  $t = n/2^K$ .
- ii. Suppose  $y_0[n] = 0$ ,  $x_0[n] = \delta[n]$  and all other  $x_k[n] = 0$   $Y_K(\omega) = H_1(2^{K-1}\omega) \prod_{k=0}^{K-2} H_0(2^k\omega)$

Then

$$\overset{\wedge}{Y}_{K}^{c}(\Omega) = Y_{K}(\Omega/2^{K}) = H_{1}(\frac{\Omega}{2}) \prod_{k=0}^{K-2} H_{0}(\Omega/2^{K-k})$$

$$= H_{1}(\frac{\Omega}{2}) \prod_{i=1}^{K-1} H_{0}(\frac{1}{2} \cdot \frac{\Omega}{2^{i}})$$

So

$$\lim_{K\to\infty} \mathring{Y}_{K}^{c}(\Omega) = H_{1}(\Omega/2) \mathring{\phi}(\Omega/2) = \mathring{w}(\Omega)$$

 $\Rightarrow 2^{K}y_{K}[n] \text{ converges to the samples of the wavelet,}$   $w(t), \text{ taken at } t = n/2^{K}.$ 

15

**Support of the Scaling Function** 

$$\begin{array}{c|c} y_{k-1}[n] & v[n] & y_k[n] \\ \hline & \uparrow 2 & h_0[n] & \end{array}$$

length  $\{v[n]\} = 2 \cdot \text{length } \{y_{k-1}[n]\} - 1$ Suppose that

$$h_0[n] = 0$$
 for  $n < 0$  and  $n > N$   
 $\Rightarrow$ length  $\{y_k[n]\} = length  $\{v[n]\} + length \{h_0[n]\} - 1$   
 $= 2 \cdot length \{y_{K-1}[n]\} + N - 1$$ 

Solve the recursion with length  $\{y_0[n]\} = 1$ So

length 
$$\{y_k[n]\} = (2^K - 1)N + 1$$

i.e. length 
$$\{y_K^c(t)\} = T_K$$
 . length  $\{y_K[n]\}$ 

$$= \frac{(2^{K} - 1) N + 1}{2^{K}}$$

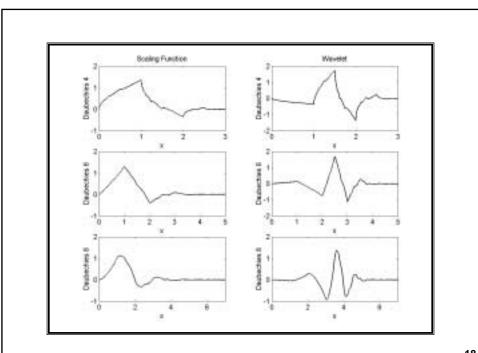
$$= N - \frac{N-1}{2^{K}}$$
 $\phi(t)$ 

$$\lim_{t\to\infty} K\to\infty$$
 length  $\{\phi(t)\} = N$ 

So the scaling function is supported on the interval [0, N]

17

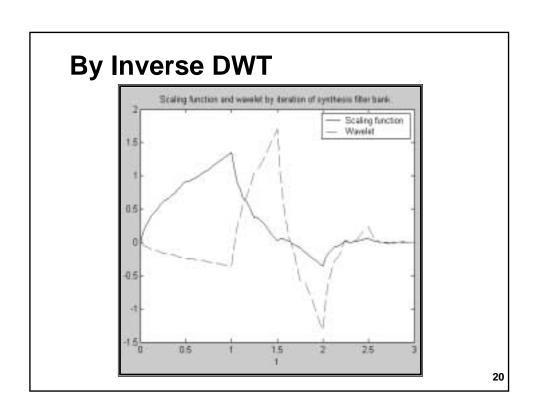
N

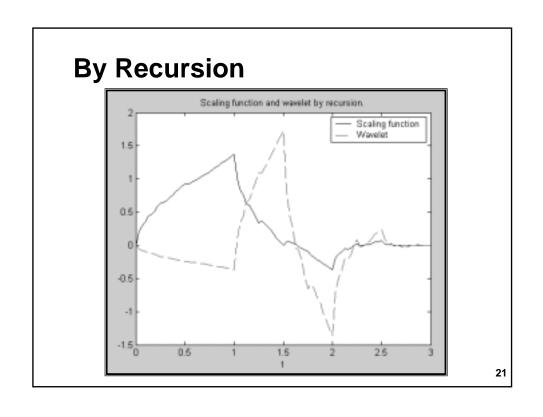


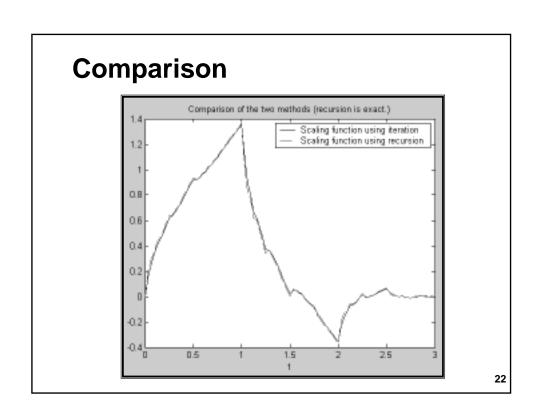
### **Matlab Example 6**

Generation of orthogonal scaling functions and wavelets









### **Matlab Example 7**

Generation of biorthogonal scaling functions and wavelets.



