Course 18.327 and 1.130
Wavelets and Filter Banks

Smoothness of wavelet bases:
Convergence of the cascade algorithm
(Condition E); Splines. Bases vs. frames.

Smoothness of Wavelet Bases

Use eigenvalue analysis to study convergence of
the cascade algorithm and smoothness of resulting
scaling function.

The cascade algorithm revisited:
ol N(t) = 2. holk] ¢0(2t - k)
Consider the behavior of the inner products
aOfn] = [40(t) §0(t + ) dit

as i — o to understand convergence.
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Filter with hy[n] Filter with hy[-n]
and then downsample

In matrix form:

a®) = ({2) 2 HH,T a® ; H, > Toeplitz
— matrix
T

Iteration converges if the eigenvalues of the transition
matrix T satisfy

Al <1
with only a simple eigenvalue at A = 1.




Splines
Splines are scaling functions whose filters only
have zeros at ti.e.
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What happens whenp = 2?
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More generally
$(Q) = (e102 SB2)°

O(t) = Opox(t) * dpox(t) * ... Kk dpox(t)  (p terms)
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¢(t) is piecewise polynomial of degree p — 1. The
derivatives, ¢¢)(t), exist for s < p — 1 and they are
continuous for s <p - 2.

e.g. Cubic spline (p = 4) is C2 continuous.

Alternatively, measure smoothness in L2 sense:
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Note: I o dQ is limiting case

So, ¢(t) has s derivatives in the L2 sense for all
S < S0 Where

Smax = P -2 Valid for splines




Non-spline Scaling Functions
In general, we have

Ho(0) = (152)° Q(o)
so that
B = Golt) * 0q(t)

pth order ugly
spline

Notice that the approximation power of ¢(t) comes entirely

from ¢(t):

Suppose that we write
T cidylt— k) = t!
for some ¢ (0 </ < p).

Then we have
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What about smoothness (in L2 sense)?
Smoothness is given by

Smax = P = %2100, | Aan(To) |

where

Tq = (2)2QQT Transition matrix for Q(w)
Alternatively, look at the transition matrix for Hy(w),
T = (d2)2HH,T

T has 2p special eigenvalues due to the zeros at n:
A=, %, Y, .. )P
Disregard these eigenvalues and look at the largest

non-special eigenvalue, A,,. Then the smoothness
is given by

Smax = '%|°92 | }‘max(T) |
}"max(T) = 4Smax
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