
Course 18.327 and 1.130 Wavelets and Filter Banks

Wavelets and subdivision: nonuniform grids; multiresolution for triangular meshes; representation and compression of surfaces.

Wavelets on Surfaces in R³

Construction by Schröder and Sweldens

- uses lifting
- scaling functions are interpolating in most straightforward case
- typically work with triangular mesh generated by subdivision

2 |

Notation:

K(j) = all vertices at resolution j

K(j + 1) = all vertices at resolution j + 1

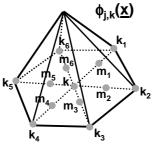
M(j) = vertices obtained by subdividing the resolution i mesh to produce the resolution i + 1 mesh

So

$$K(j + 1) = K(j) \setminus M(j)$$

Interpolating property means that scalings functions satisfy

$$\phi_{j,k}(\underline{x}) = \begin{cases} 1 & \text{if } \underline{x} = \underline{x}_k \\ 0 & \text{if } \underline{x} = \underline{x}_{k'} \end{cases} \quad k \in K(j)$$


$$k' \in K(j)$$

$$k' \neq k$$

 $\underline{\mathbf{x}}$ = position vector of a point on S.

3

Simple interpolating scaling function: hat function

Scaling functions at level j are all located at vertices in K(j)

Refinement equation

$$\phi_{j,k}(\underline{x}) = \phi_{j+1,k}(\underline{x}) + \frac{1}{2} \sum_{m=m_1}^{m_6} \phi_{j+1,m}(\underline{x})$$

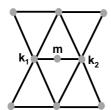
In general, interpolating scaling functions will satisfy a

refinement equation of the form

$$\phi_{j,k}(\underline{\mathbf{x}}) = \phi_{j+1,k}(\underline{\mathbf{x}}) + \sum_{m \in n(j,k)} h_0^j[\mathbf{k},m] \phi_{j+1,m}(\underline{\mathbf{x}})$$

ı,

n(j,k) = vertices in the neighborhood of vertex k that contribute to the refinement equation.
 Because of interpolating property, n(j,k) can only consist of vertices in M(j).


How to construct the wavelet?

Start with

 $w_{j,m}(\underline{x}) = \phi_{j+1,m}(\underline{x})$ Wavelets at level j are all located at vertices in M(j)

Then use the lifting idea to impose vanishing moment.

5

Consider a wavelet of the form

$$W_{j,m}(\underline{x}) = \phi_{j+1,m}(\underline{x}) - \alpha_1 \phi_{j,k_1}(\underline{x}) - \alpha_2 \phi_{j,k_2}(\underline{x})$$

For the zeroth moment to vanish

$$0 = I_{j+1,m} - \alpha_1 I_{j,k_1} - \alpha_2 I_{j,k_2}$$

where

$$I_{j,k} = \int_{s} \phi_{j,k}(\underline{x}) dS$$

ô |

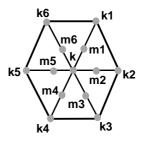
To satisfy vanishing moment condition, choose

$$\alpha_i = I_{j+1,m}/2I_{j,k_i}$$
 $i = 1, 2$

So the wavelet equation can be written as

$$\mathbf{w}_{j,m}(\underline{\mathbf{x}}) = \phi_{j+i,m}(\underline{\mathbf{x}}) - \sum_{k \in A(j,m)} \mathbf{h}_1^j[k,m]\phi_{j,k}(\underline{\mathbf{x}})$$

with

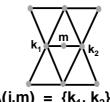

A(j,m) = two immediate neighbors in K(j)

$$h_1^{j}[k,m] = I_{j+1,m}/2I_{j,k}$$

7

Wavelets on Surfaces in R³

$$\phi_{j,k}(\underline{x}) = \phi_{j+1,k}(\underline{x}) + \sum_{m \in n(j,k)} h_0^{j}[k,m] \phi_{j+1,m}(x) |_{k5} \langle (x,m) \rangle_{k5} \langle (x,m) \rangle_{k$$



Linear interpolating functions:

$$h_0^{j}[k,m] = \begin{cases} \frac{1}{2} & m \in n(j,k) \\ 0 & \text{otherwise} \end{cases}$$

 $n(j,k) = \{m_1, m_2, m_3, m_4, m_5, m_6\}$

Synthesis wavelet

$$w_{j,m}(\underline{x}) = \phi_{j+1,m}(\underline{x}) - \sum_{k \in A(j,m)} h_1^j[k,m] \phi_{j,k}(\underline{x})$$

R

What are the analysis functions?

Use alternating signs condition to get analysis filters, e.g. 1D interpolating filter

If
$$F_0(z) = \frac{1}{16} \{-z^3 + 0 \cdot z^2 + 9z + 16 + 9z^{-1} + 0 \cdot z^{-2} - z^{-3}\}$$

then $H_1(z) = F_0(-z) = \frac{1}{16} \{z^3 + 0.z^2 - 9z + 16 - 9z^{-1} + 0.z^{-2} + z^{-3}\}$
 \Rightarrow Change signs of all coefficients except center

So the analysis functions turn out to be

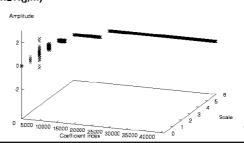
$$\begin{split} \widetilde{\varphi}_{j,k}(\underline{x}) &= \widetilde{\varphi}_{j+1,k}(\underline{x}) + \sum_{m \in a(j,k)} h_1^j [k,m] \widetilde{w}_{j,m}(\underline{x}) & a(j,k) = \{m: k \in A(j,m)\} \\ \widetilde{w}_{j,m}(x) &= \widetilde{\varphi}_{j+1,m}(\underline{x}) - \sum_{k \in N(j,m)} h_0^j [k,m] \widetilde{\varphi}_{j+1,k}(\underline{x}) & N(j,m) = \{k: m \in n(j,k)\} \end{split}$$

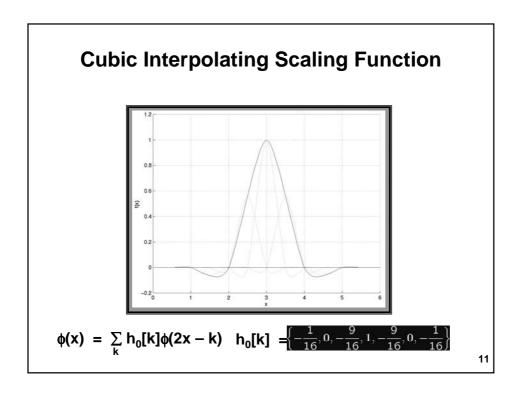
Exercise: verify that $\phi_{j,k}(\underline{x})$, $w_{j,m}(\underline{x})$, $\widetilde{\phi}_{j,k}(\underline{x})$, $\widetilde{w}_{j,m}(\underline{x})$ are biorthogonal.

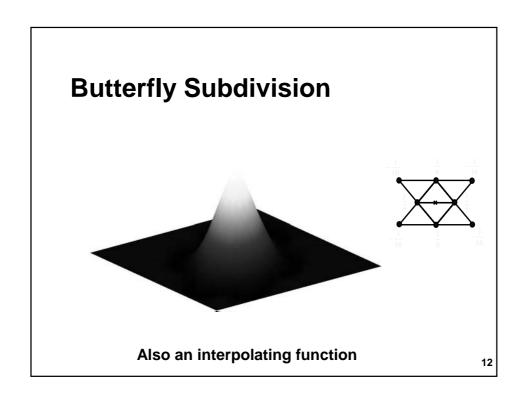
9

Equations for the DWT:

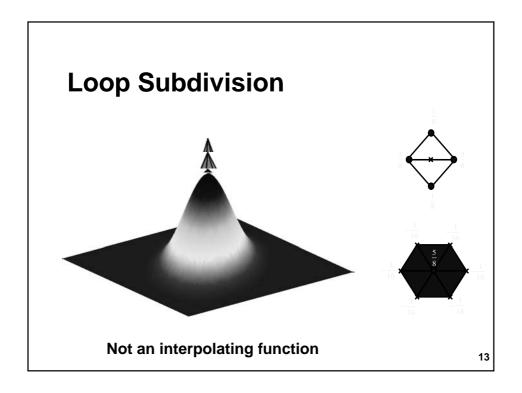
Analysis (from analysis wavelet, refinement equations)


$$\begin{array}{ll} d^{j}[m] \; = \; c^{j+1}[m] \; - \sum\limits_{k \in N(j,m)} h_{0}^{j}[k,m] c^{j+1}[k] & \quad \text{predict} \\ c^{j}[k] \; = \; c^{j+1}[k] \; + \; \sum\limits_{m \in a(j,k)} h_{1}^{j}[k,m] \; d^{j}[m] & \quad \text{update} \end{array}$$


Synthesis (invert the lifting operations)


$$c^{j+1}[k] = c^{j}[k] - \sum_{m \in a(j,k)} h_{1}^{j}[k,m]d^{j}[m]$$

 $c^{j+1}[m] = d^{j}[m] + \sum_{k \in N(j,m)} h_{0}^{j}[k,m]c^{j+1}[k]$


e.g.

