Course 18.327 and 1.130
Wavelets and Filter Banks

Numerical solution of PDEs: Galerkin
approximation; wavelet integrals
(projection coefficients, moments and
connection coefficients); convergence

Numerical Solution of Differential Equations

Main idea: look for an approximate solution that lies in V;.
Approximate solution should converge to true

solution as j — .
Consider the Poisson equation

e (4 ——

ox2

(Ieave boundary )
L'\ conditions till later

Approximate solution:

UappronX) = 2 C[K]2V2 (21 X = K) e 0
—
¢j,k(X)

trial functions




Method of weighted residuals: Choose a set of test
functions, g,(x), and form a system of equations
(one for each n).
aZ
e g, (x)dx = [10)g,() dx
X

One possibility: choose test functions to be Dirac

delta functions. This is the collocation method.

g,(x) = 8(x —n/2)) n integer

= ZC[k]q)J"'k(n/ZJ) = f(n/ZJ) ------------ [
k

Second possibility: choose test functions to be
scaling functions.

» Galerkin method if synthesis functions are used
(test functions =trial functions)
 Petrov-Galerkin method if analysis functions are used

e.g. Petrov-Galerkin

0(X) = 0.(x) €V

= | 20T 24,00 §,60 dx = T1008,,00 dx [

Note: Petrov-Galerkin  Galerkin in orthogonal case




Two types of integrals are needed:
(a) Connection Coefficients

oo

JZ0,(%) - §4(x)dx

22 ] 21247"(2ix - K)22§(2ix - n)dlx
22 [¢'@d(x + k—n) dv
= 2%y, I

sac2 N1 1s defined by

where h

e [N] = T 07 - n)dt
?

connection coefficients

(b) Expansion coefficients
The integrals_If(x)E;Ln(x)dx are the coefficents for
the expansion of f(x) in V;.

fi(x) = % rilk] ¢ k()
with

Ikl = J100 §,x) dx

So we can write the system of Galerkin equations as
a convolution:

223 c[KlNycln K] = r[n] [ 0




—=Solve a deconvolution problem to find c[k] and

then find u,,,..4 USing equation .

Note: we must allow for the fact that the solution may
be non-unique, i.e. Hy;,2(m) may have zeros.

Familiar example: 3-point finite difference
operator

hzmelnl = {1,-2, 1}
Hyaw2(z) = 1-2z1+272 = (1 -z71)?
= Hgyse(w) has a 2"d order zero at @ = O.

Suppose uy(x) is a solution. Then uy(x) + AX + B is
also a solution. Need boundary conditions to fix

uapprox(x)-

Determination of Connection Coefficients

haaeln] = [6"(t) o(t — n)dt
Simple numerical quadrature will not converge if
¢”(t) behaves badly.

Instead, use the refinement equation to formulate an
eigenvalue problem.
o(t) = 2 X folk]e(2t — k)
o"(t) = 8 X folk]o"(2t — k) Multiply and
ot-n)= 23 holf]o(2t — 2n - ¢) | Integrate
So
haaeln] = 8 X folk] 2 holfhgael2n + £ - K]




p=3 scaling function

Daubechies 6
scaling function

Derivative of the p=3 scaling function

First derivative 5" llf' e
of Daubechies 6 B l' (
scaling function -« “, ()

Reorganize as
haaeln] = 82 holm —2n](X fo[m — klhzaeK])
m = 2n +¢
Matrix form
Ny = 8 A B hy,e —>eigenvalue problem

Need a normalization condition— use the moments
of the scaling function:

If ho[n] has at least 3 zeros at &, we can write
T lKlot — k) = 125 polk] = Jrg(t — kydt
Differentiate twice, multiply by E)(t) and integrate:

2 Wo[Klhyel- Kl = 2! —Normalizing condition
K 10




Formula for the moments of the scaling function
ui frto(a - kd

Recursive formula
I =_I¢(t)dt =1
Hy = 741 2 () 5 halkIk - mp
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How to enforce boundary conditions?

One idea — extrapolate a polyr_llomialz

u() = 2 clklg(x) = 2 a[flx*
Relate c[k] to a[£] through mOoments. Extend c[k]
by extending underlying polynomial.

Extrapolated polynomial should satisfy boundary

constraints:

Dirichlet:

p_l l
uXe) = a = an[f]xo =o Constraint
Neumann: on a[/]

Ux) = B = 3 alae =
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Convergence
Synthesis scaling function:

o(x) = 2 %fo[k]¢(2x —K)

We used the shifted and scaled versions, ¢, ,(x), to
synthesize the solution. If Fy(w) has p zeros at &, then
we can exactly represent solutions which are degree
p — 1 polynomials.

In general, we hope to achieve an approximate solution
that behaves like

ux) = 2 clklg(x) + OhP)

where

h

5 spacing of scaling functions
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Reduction in error as a function of h
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Step size, 112*m
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Multiscale Representation

e.g. d%ulox? = f
Expand as

u =Y cox—-k)+ %) > d; w (2 x-k)
k =0k

Galerkin gives a system
Ku = f
with typical entries

Knn = 221_T§27W(x — n)w(x-m)dx
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Effect of Preconditioner

e Multiscale equations: (WKWT)(Wu) = Wf

* Preconditioned matrix: K =

prec

DWKWTD

Simple diagonal preconditioner




Matlab Example

Numerical solution of Partial
Differential Equations
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The Problem

1. Helmholtz equation: u,, +au =f
* p=6; % Order of wavelet scheme (p,,;,=3)
 a=0
e L=3; % Period.
e nmin=2; % Minimum resolution
e nmax =7; % Maximum resolution
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Solution at Resolution 2

Salution to the Helmhaltz equation u,  + a u = fwith periodic boundary conditions
] :
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Solution at Resolution 3

Solution to the Helmholtz equation u, . +a u = fwith periodic boundary conditions
15
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Solution at Resolution 4

Solution to the Helmholtz equation u,_ +& u = fwith periodic boundary conditions
1
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Solution at Resolution 5

Solution to the Helmhaltz equation Uy, +au= fwith periodic boundary conditions
1 . .
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Solution at Resolution 6

Solution to the Helmholtz equation u,,, +a u = fwith periodic boundary conditions
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Solution at Resolution 7

Solution to the Helmhaliz equation u, . + a u = fwith periodic boundary conditions
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Convergence Results

Convergence results

>> helmholtz slope = 5.9936

25

13



