Course 18.327 and 1.130
Wavelets and Filter Banks

Filter Banks (contd.): perfect
reconstruction; halfband filters and
possible factorizations.

Product Filter

Example: Product filter of degree 6

Po2) = g (-1+922 + 162° + 9z* - z%)

Po(z) - Py(-2) = 223
= Expect perfect reconstruction with a 3 sample delay
Centered form:

P(z) = z3Py(z) = 11_6(- z3 + 9z + 16 + 9z1-23)
P(z) + P(-z) = 2 i.e. even part of P(z) = const
In the frequency domain:
P(ow) + Plo+x) = 2 Halfband Condition




P(w)

Note antisymmetry
about ® = 1/2

P(w) is said to be a halfband filter.

How do we factor Py(z) into Hy(z) Fy(z)?
Po(z) = 1/16(1 + z1)4(-1 + 4z1- 22
= “116(1+ 242+ V3-2z")(2-V3-2")

So P,(z) has zeros at
z = -1 (4 order)
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Some possible factorizations

Ho(z)  (orFy(2))

Fo(z)  (or Hy(2))
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Case (b) -- Symmetric filters (linear phase)
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Case (c) -- Symmetric filters (linear phase)

¥

2nd 2nd
order orde

filter length = 4

of the other:  fj[n]
Fo(2)

N

= hy[3 - n]
= 27 Hyfz)

filter length = 4

417—2 1443, 3+13, 33, 1-«/3} 437—2{1 -3, 3-V3, 3+13, 1+«/§}

Note that, in this case, one filter is the flip (transpose)
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filter length = 3 filter length = 5
Va{1,2,1} Va{-1,2,6,2, -1}
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Case (f) -- Orthogonal filters
(minimum phase/maximum phase)
2nd 2nd
order order
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General form of product filter (to be derived later):

Plz) = 2(1EP( P (P (55

Py(2) = z?-1P(2)

=(1+ 2'1)2p212,,_1:2::10 (PrE-1)(-1)kz -+ k(1=zy*

— " ~

Binomial Q(z)

(spline) Cancels all odd powers
filter except z-(2p-1)

P,(z) has 2p zeros at & (important for stability of iterated
filter bank.)

Q(z) factor is needed to ensure perfect reconstruction.

p=1
P,(z) has degree 2 — leads to Haar filter bank.
trztis 12— 1
1,1,1, 11— 55 p—i2 1,1 -
N 1-z1 2pb—0
1-z* l2pb—0,0

1+2z1

Fo(z) = 1+, Hy(2) =

Synthesis lowpass filter has 1 zero at n

— Leads to cancellation of constant signals in analysis
highpass channel.

Additional zeros at © would lead to cancellation of
higher order polynomials.
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p =2
P,(z) has degree 4p -2 = 6

Pol2) = (1427 5 {()) 2= (323

= G +z(-1+ 4z - 29

%{' 1+ 922+ 1623 + 924 — z'6}

Possible factorizations

1/8 trivial
2/6} \
-1(> . 35 | linear phase
Y a N 4/4 orthogonal
4th orde\ 2- 1 g

2+¥3 " (Daubechies-4)

1

p=4
P,(z) has degree 4p -2 = 14
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Common factorizations (p = 4):

(a) 917 Known in Matlab
as bior4.4
@)
4th 4th
order// a order / -\
o =
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(b) 8/8 (Daubechies 8) -- Known in Matlab as db4
@)
Y
A\ 4

dof[ON /[
NI N

14




Why choose a particular factorization?

Consider the example with p = 2:

i. One of the factors is halfband
The trivial 1/8 factorization is generally not desirable,
since each factor should have at least one zero at =.
However, the fact that Fy(z) is halfband is interesting
in itself.

V(z) X(z) Y(z)

Fo(2) —>—
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Let Fy(z) be centered, for convenience. Then
Fo(z) = 1+ odd powers of z

Now
X(z) = V(z2) = even powers of z only
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So
Y(z) = Fy(2z) X(2)
= X(z) + odd powers
y[n] = x[n] ; neven
{Z fo[kIx[n — k] ; n odd

k odd

= fy[n] is an interpolating filter

sin (%)n | I
: 0

7in

Another example: f)[n] =
(ideal bandlimited
interpolating filter)




ii. Linear phase factorization e.g. 2/6, 5/3
Symmetric (or antisymmetric) filters are desirable for
many applications, such as image processing. All
frequencies in the signal are delayed by the same
amount i.e. there is no phase distortion.

h[n] linear phase = A(w)e-@a*9

real delays all\ 0 if symmetric

frequencies 1 if antisymmetric

by a samples

Linear phase may not necessarily be the best choice for
audio applications due to preringing effects.
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iii. Orthogonal factorization

This leads to a minimum phase filter and a maximum

phase filter, which may be a better choice for
applications such as audio. The orthogonal
factorization leads to the Daubechies family of
wavelets — a particularly neat and interesting case.
4/4 factorization:

Ho(z) =22 (14 21202 + B) - 2]

= 5 {1 +\3) + (3 + V3)z" + (3 -V3)22 + (1- V3)z%}

Fol2) = 5 (1 + 2202 - \B) - 2]

= oAz (1+ 22+ \3) - 2]

=27 H, (z)

18




P(z) = z'Py(2)

Ho(2) Ho(z7)
From alias cancellation condition:

H.(2)

Fo(-z) = -z Hy(-z")

F.(2)

-Ho(-2) = 22 Hy(z")
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Special Case: Orthogonal Filter Banks

Choose H,(z) so that

H,(z) = -zNHy(-z") N odd

Time domain

hy[n] = (- 1)" hy[N - n]

Fo(z) = H; (-2) = zN H(z™")

= fy[n] = hy[N-n]

Fi2) = -Ho(-2) = ZNH,(z")

=f,[n] = h,[N-n]

So the synthesis filters, f,[n], are just the time-reversed
versions of the analysis filters, h,[n], with a delay.
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Why is the Daubechies factorization orthogonal?
Consider the centered form of the filter bank:

Holz]l— —{{2 - y,[n]- {12 H,(z)
 xin] [n]
no delay
H,[z] 2 “y,[n]- 12+—{Ho(z") [in centered
form
Analysis bank Synthesis bank
causal — only anticausal — only
negative powers positive powers
of z of z
21
In matrix form:
Analysis Synthesis
y L Yo
Y1 B Y1
w WT
So
x = WTW x for any x
W'W = | = WWT

An important fact: symmetry prevents orthogonality
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Matlab Example 2

1. Product filter examples
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Degree-2 (p=1): pole-zero plot

Zeros of the product filter with degree 2
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Real Part
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Degree-2 (p=1): Freq. response

Frequency response of the product filter with degree 2
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Degree-6 (p=2): pole-zero plot

Zeros of the product filter with degree 6
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Degree-6 (p=2): Freq. response

Frequency response magnitude

Frequency response of the product filter with degree &
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Degree-10 (p=3): pole-zero plot
Zeros of the product filter with degree 10
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Degree-10 (p=3): Freq. response

Frequency response of the product filter with degree 10
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Degree-14 (p=4): pole-zero plot
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Zeros of the product filter with degree 14
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Degree-14 (p=4): Freq. response

Frequency response of the product filter with degree 14
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