
Course 18.327 and 1.130

Wavelets and Filter Banks


Filter Banks (contd.): perfect 

reconstruction; halfband filters and 

possible factorizations. 

Product Filter 

Example: Product filter of degree 6 

P0(z) = (-1 + 9z 
1 

16 
-2 + 16z-3 + 9z-4 - z-6) 

P0(z) - P0(- z) = 2z-3 

Ω Expect perfect reconstruction with a 3 sample delay 

Centered form: 

P(z) = z3P0(z) = (- z3 
1 

16 + 9z + 16 + 9z-1 œ z-3) 

P(z) + P(- z) = 2 i.e. even part of P(z) = const 

In the frequency domain: 

P(wwww) + P(wwww + pppp) = 2 Halfband Condition 
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P(wwww) 

Note antisymmetry 

about wwww = pppp/2 

P(wwww) is said to be a halfband filter. 

How do we factor P0(z) into H0(z) F0(z)? 

P0(z) = 1////16(1 + z -1)4(-1 + 4z -1 - z -2) 

= -1/16(1 + z -1)4(2 + µµµµ 3 œ z -1)(2 - µµµµ3 œ z -1) 
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So P0(z) has zeros at 

z = -1 (4th order) 

z = 2 êêêê µµµµ3 Note: 2 + µµµµ3 = 
1 

2 -µµµµ3 

4th order 

zero at 

z = -1 

-1 

Im 

P0(z) 

1 Re2-µµµµ3 2 + µµµµ3 
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Some possible factorizations 

H0(z) (or F0(z) ) F0(z) (or H0(z) ) 

(a) 1 -1/16(1 + z -1)4(2 + µµµµ3 - z -1)(2 - µµµµ3 - z -1) 

(b) ²(1 + z -1) -1/8(1 + z -1)3(2 + µµµµ3 - z -1)(2 - µµµµ3 - z -1) 

(c) ³(1 + z -1)2 -1/4(1 + z -1)2(2 + µµµµ3 - z -1)(2 - µµµµ3 - z -1) 

(d) ²(1 + z -1)(2 + µµµµ3 - z -1) -1/8(1 + z -1)3(2 - µµµµ3 - z -1) 

(e) 1/8(1 + z -1)3 -1/2(1 + z -1)(2 + µµµµ3 - z -1)(2 - µµµµ3 - z -1) 

(f) (1 + z -1)2(2 + µµµµ3 - z -1) (1 + z -1)2(2 - µµµµ3 - z -1) 

(g) 1/16(1 + z -1)4 -(2 + µµµµ3 - z -1)(2 - µµµµ3 - z -1) 

(µµµµ3 œ 1) 

4 µµµµ2 

-µµµµ2 

4 (µµµµ3 œ 1) 
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Case (b) Symmetric filters (linear phase) 

3rd 

order 

-1 2-µµµµ3 2 + µµµµ3-1 

filter length = 2 filter length = 6 

²{ 1, 1 } −/8 {-1, 1, 8, 8, 1, -1} 

3
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-1 

Case (c) -- Symmetric filters (linear phase) 

2nd 

order 
2nd 

order 

-1 2-µµµµ3 2 + µµµµ3 

filter length = 3 filter length = 5 

³ { 1, 2, 1 } ³ { -1, 2, 6, 2, -1} 
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Case (f) -- Orthogonal filters 

(minimum phase/maximum phase) 

-1 

2nd 

order 

-1 2 + µµµµ3 

2nd 

order 

2-µµµµ3 

filter length = 4 filter length = 4 
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Note that, in this case, one filter is the flip (transpose) 

of the other: f0[n] = h0[3 - n] 

F0(z) = z -3 H0(z -1) 
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General form of product filter (to be derived later): 

p - 1 
P(z) = 2( 1 + z )p( 1 + z-1

)p ƒ ( p + k - 1)( 1 - z )k(1 œ z-1
)k 

2 2 k 2 2 
k = 0 

P0(z) = z-(2p œ1) P(z) 

= (1 + z-1)2p 1 
p
ƒ 
- 1

( p + k - 1)(-1)k z -(p - 1) + k( 1 œ z-1

)
2k 

2 2p-1
k = 0 

k 2 
&'( &))))))')))))))( 

Binomial Q(z) 

(spline) Cancels all odd powers 

filter except zœ(2p-1) 

P0(z) has 2p zeros at p (important for stability of iterated

filter bank.)

Q(z) factor is needed to ensure perfect reconstruction. 9
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p = 1 

P0(z) has degree 2 çççç leads to Haar filter bank. 

1 + z -1 

2 

1 - z -1 

éééé2 

éééé2 

“ 

1, 1, 1, 1 

“ 

“ “ 

“ 0, 0 

1 + z -1 

2 
éééé2“ “ 

1 - z -1 éééé2“ “ 

1, 1 
1 

0 

F0(z) = 1 + z -1 , H0(z) = 

Synthesis lowpass filter has 1 zero at pppp 

ç Leads to cancellation of constant signals in analysis 

highpass channel. 

Additional zeros at pppp would lead to cancellation of 

higher order polynomials. 

1 + z -1 

2 

5
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p = 2 

P0(z) has degree 4p œ 2 = 6 

P0(z) = (1 + z -1)4 { ( ) z -1 œ ( )( )2} 

= (1 + z -1)4( - 1 + 4z -1 - z -2) 

= {- 1 + 9z -2 + 16z -3 + 9z -4 œ z -6} 

1 

8 
1 

0 
2 

1 

1 œ z -1 

2 

1 

16 

1 

16 

4th order 

-1 

1
2-µµµµ3 2 + µµµµ3 

Possible factorizations 

1/8 trivial 

2/6 

3/5 

4/4 orthogonal 

(Daubechies-4) 
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linear phase 
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p = 4 

P0(z) has degree 4p œ 2 = 14 

8th order 

-1 

6
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Common factorizations (p = 4): 

(a) 9/7 Known in Matlab 

as bior4.4 

4th 

order 

-1 

4th 

order 

-1 
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(b) 8/8 (Daubechies 8) -- Known in Matlab as db4 

4th 

order 

-1 

4th 

order 

-1 

7
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Why choose a particular factorization? 

Consider the example with p = 2: 

i. One of the factors is halfband 

The trivial 1/8 factorization is generally not desirable, 

since each factor should have at least one zero at pppp. 

However, the fact that F0(z) is halfband is interesting 

in itself. 

V(z) X(z) Y(z) 

Let F0(z) be centered, for convenience. Then 

F0(z) = 1 + odd powers of z 

Now 

X(z) = V(z2) = even powers of z only 

åååå2 F0(z) 
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So 

Y(z) = F0(z) X(z) 

= X(z) + odd powers 

y[n] = x[n] ; n even 

ƒƒƒƒ f0[k]x[n œ k] ; n odd 

ΩΩΩΩ f0[n] is an interpolating filter 

*
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+

,
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+

,
*
+

,
 

k odd 

y[n] 

2 0 2 4 n 

x[n] 

0 2 4 
• •• •• 

• • 

-2 n 
Another example: f0[n] = 

(ideal bandlimited 

interpolating filter) 

sin 

ppppn 

pppp 
2 

n( ) 

• • 

• • 
• 

• 
• • 
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ii. Linear phase factorization e.g. 2/6, 5/3 

Symmetric (or antisymmetric) filters are desirable for 

many applications, such as image processing. All 

frequencies in the signal are delayed by the same 

amount i.e. there is no phase distortion. 

h[n] linear phase ΩΩΩΩ A(wwww)eœi(wwww aaaa + qqqq) 

real delays all 0 if symmetric 

frequencies 

by aaaa samples 

Linear phase may not necessarily be the best choice for 

audio applications due to preringing effects. 

pppp 

2 
if antisymmetric 
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iii. Orthogonal factorization 
This leads to a minimum phase filter and a maximum 
phase filter, which may be a better choice for 
applications such as audio. The orthogonal 
factorization leads to the Daubechies family of 
wavelets œ a particularly neat and interesting case. 
4/4 factorization: 

H0(z) = (1 + z -1)2[(2 + µµµµ3) œ z -1] 

= {(1 + µµµµ3) + (3 + µµµµ3)z -1 + (3 -µµµµ3)z -2 + (1- µµµµ3)z -3} 

F0(z) = (1 + z -1)2[(2 - µµµµ3) œ z -1] 

= z -3 (1 + z2)[(2 + µµµµ3) - z] 

µµµµ3 - 1 

4µµµµ2 

1 

4µµµµ2 

- µµµµ2 

4(µµµµ3-1) 

µµµµ3-1 

4µµµµ2 

= z -3 H0 (z -1) 

9




???

ΩΩΩ

P(z)	 = z?P0(z) 

= H0(z) H0(z
-1) 

From alias cancellation condition: 

H1(z) = F0(-z) = -z-3 H0(-z
-1) 

F1(z) = -H0(-z) = z-3 H1(z
-1) 
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Special Case: Orthogonal Filter Banks 

Choose H1(z) so that 

N odd 

Time domain 

h1[n] = (- 1)n h0[N œ n] 

F0(z) = H1 (- z) = z-N H0(z
œ1)


Ω f0[n] = h0[N œ n]

F1(z) = - H0(- z) = z-N H1(z

-1)

Ωf1[n] = h1[N œ n]

So the synthesis filters, fk[n], are just the time-reversed

versions of the analysis filters, hk[n], with a delay.


H1(z) = - z-N H0(- z-1) 
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Why is the Daubechies factorization orthogonal? 

Consider the centered form of the filter bank: 

no delay 

in centered 

form 

H0[z] 

H1[z] 

éééé2 

éééé2 

x[n] 
y0[n] 

y1[n] åååå2 

åååå2 H0(z -1) 
x[n] 

H0(z -1) 

§ 

Analysis bank 

causal œ only 

negative powers 

of z 

Synthesis bank 

anticausal œ only 

positive powers 

of z 
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In matrix form: 

Analysis Synthesis 

yo 

y1 

= 
L 

B 
x x = LT BT 

y0 

y1 
&'(&'(&'(&'( &'(&'(&'(&'( 

W WT 

So 

x = WTW x for any x 

WTW = I = WWT 

An important fact: symmetry prevents orthogonality 
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Matlab Example 2 

1. Product filter examples 
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Degree-2 (p=1): pole-zero plot 
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Degree-2 (p=1): Freq. response 
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Degree-6 (p=2): pole-zero plot 
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Degree-6 (p=2): Freq. response 
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Degree-10 (p=3): pole-zero plot 
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Degree-10 (p=3): Freq. response 
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Degree-14 (p=4): pole-zero plot 
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Degree-14 (p=4): Freq. response
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