Course 18.327 and 1.130
Wavelets and Filter Banks

Multiresolution Analysis (MRA):
Requirements for MRA;
Nested Spaces and
Complementary Spaces;
Scaling Functions and Wavelets

Scaling Functions and Wavelets

Continuous time: @(t) Box function
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For this example:

ot) = @2t) + @2t—1)

More generally:

N Refinement equation
@t) = 2% ho[k]lp2t — k) or
St Two-scale difference
equation

@(t) is called a scaling function

The refinement equation couples the representations
of a continuous-time function at two time scales. The
continuous-time function is determined by a discrete-
time filter, hy[n]! For the above (Haar) example:

ho[0] = hy[1] = %2 (alowpass filter)

Note: (i) Solution to refinement equation may not
always exist. If it does...

(i) @(t) has compact support i.e.
@t) = Ooutside0<t<N
(comes from the FIR filter, hy[n])
(iii) @(t) often has no closed form solution.
(iv) @(t) is unlikely to be smooth.
Constraint on hy[n]:

[@)dt = 2 kNgoho[k]I @2t — K)dt
- 22 ho[K] * ¥ J @(t)dt
So

N
Z okl = 1 Assumes [ g(t)dt # 0




1

w(t) Square wave
Now consider: of finite length -
1 Haar wavelet
t
0 1/2
-@p(2t - 1)
1 ®2t) Scaled + shifted
Scaled + sign flipped
172 1
ob 12 t 0 t
w(t) =@2t) - @2t-1)
More generally:
N
w(t) = 2% h;[Kk] @2t — k) Wavelet equation
k=0

For the Haar wavelet example:

h,[0] = % hy[1] = -% (a highpass filter)




Some observations for Haar scaling function and wavelet

1. Orthogonality of integer shifts (translates):

@t-1)
1 o) 1
0 1 t 0 t
1 ifk=0
Jo(t) gt - kdt = {O otherwise
= 9[K]
Similarly
fw(t) w(t — k)dt = 3[k]
Reason: no overlap ;
2. Scaling function is orthogonal to wavelet:
1 o) ! w(t)
+ +
1
t
0 1 t o' 1/2

Jo(t) w(t)dt = 0

Reason: +ve and —ve areas cancel each other.




3. Wavelet is orthogonal across scales:

. w(t) w(2t) w2t - 1)

1 1/2

0 1/2 to'j t ! u t

fw®) w@tdt = 0, [w(t)w@t-1)dt = 0

Reason: finer scale versions change sign while
coarse scale version remains constant.

Wavelet Bases

Our goal is to use w(t), its scaled versions (dilations)
and their shifts (translates) as building blocks for
continuous-time functions, f(t). Specifically, we are
interested in the class of functions for which we can
define the inner product:

<f(®) . g(t)> = [f() g*(D)dt < w

Such functions f(t) must have finite energy:
If@I° = JOOTFdt <

and they are said to belong to the Hilbert space, L?(0).
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Consider all dilations and translates of the Haar wavelet:

212\ (2it —
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Normalization factor so that ||
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— K)dt
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J and k

w(2it —
0 otherwise
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IWj,k(t) W, (1) dt

_Jaif]
Sj—-J1[k-K]
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w;,(t) form an orthonormal basis for L(0).

) = Thpw(® i wi(®) = 22w(2t—K)
1B

by = _If(t) W, (t) dt
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Multiresolution Analysis

Key ingredients:
1. A sequence of embedded subspaces:
{oy0..0v,0v,0v,0..0Vv;0V;,,0...0L%0)
L2(O) = all functions with finite energy
={f(®): T Of (t) IF dt < oo} Hilbert
-%0 space
Requirements:
« Completenessasj - o . If f(t) belongs to
L#(0) and f{(t) is the portion of f(t) that lies in
v, then [ () = f(1)
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Restated as a condition on the subspaces:

A v, =L2@0)

j=-e

* Emptinessasj - -
li _
il fi® 11 =0

Restated as a condition on the subspaces:

AV = {0}

J=-0
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2. A sequence of complementary subspaces, W,
such that V;+W; =V,

and Vin W; ={0} (no overlap)

This is written as
V;OW,; =V, (Directsum)

Note: An orthogonal multiresolution will have W;
orthogonalto V; : W; h V;.
So orthogonality will ensure that V; n W; = {0}
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We thus have
V, = V,OW,
V, =V, O0W, =V, OW,0OW,
V, = V,OW, =V, OW,0W, OW,

!

J-1
Vi = Ve OWoy = VO3 W,
) .

L2@) = V,O0% W,
i=0

We can also write the recursion for j <0
Vo =V, 0O0W,
=V,OW,0OW,
M
-1
=Vv,0Xx w,
.
-1 00
=2 W, =L¥0) = X W,
£ [
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3. A scaling (dilation) law:
If f(t) OV;then f(2t) OV,
4. A shift (translation) law:
If f(t) OV, then f(t-k) OV, k integer
5. V, has a shift-invariant basis, {@(t-K) : - 00 < k < o}
W, has a shift-invariant basis, {w(t-Kk) : - 00 < k < o0}

We expect that V, = V,+ W, will have twice as
many basis functions as V, alone.
First possibility: {@t-k) , w(t-K) : - 00 <k < o0}
Second possibility: use the scaling law i.e.

if @(t- k) OV,, then @2t-k) O V,
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So
V, has a shift-invariant basis, {V2 ((2t-k): - ® < k < «}

Can we relate this basis for V; to the basis for V,?
We know that
Vo, OV,

So any function in V, can be written as a combination
of the basic functions for V,.

In particular, since (t) O V,, we can write

Q1) = 23 holk] @2t - k)

This is the Refinement Equation (a.k.a. the Two-
Scale Difference Equation or the Dilation Equation).
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We also know that
W, = V, -V,
So
W, OV,

This means that any function in W, can also be written
as a combination of the basic functions for V;.
Since w(t) 0 W, we can write

_ B Wavelet
w(t) = 2Z [kl @2t=k) | Eoion
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Multiresolution Representations

Functions:
I t
Level 2 detail
{ Level 1 detail
Level O detail
Finite energy Coarse
functions approximation
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Multiresolution Representations
Geometry:

a | y

B = 3, L] = 3 M= N, Lgvel = 4 Mo AR Lovell = 8

= 205, Ll = 0 M= W, Lengd = T = TEIT, el =

Mesh courtesy of Igor Guskov (Caltech)
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