Course 18.327 and 1.130
Wavelets and Filter Banks

Orthogonal wavelet bases: connection
to orthogonal filters; orthogonality in
the frequency domain. Biorthogonal

wavelet bases.




Orthogonal Wavelets

2D Vector Space:
Basis vectors are i,j — orthonormal basis

X

v, and v, are the projections of v onto the x and
y axes:
vV, = (Vv,i) i

v, =(V,j)J




(v,i) =[vy, v] [O] = v, Inner Product
1

Orthogonal multiresolution spaces:
V; has an orthonormal basis {212 ¢(2! t — k): - 0 < k < o0}

by (t)

W; has an orthonormal basis {2/'2 w(2! t — k): -0 < k < o0}

Wi ()




Orthonormal means

o0

(O;,(t) » 0(t)) = J2"’2¢(2"t — k) 212¢(2it - I)dt = [k - I]
(Wi (t) , Wy (t)) = JrziIZW(Zit — k) 212w (2it - I)dt = 5[k - 1]
For orthogonal m-uoitiresolution spaces, we have
V; b W,
So
(O (t) , w; ()= 0




Projection of an L2 function, f(t), onto V;:

fi(t) = X aj[k] ¢;(t)
with K
aj[k] = (f(t), ¢j,k(t)>
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Projection of f(t) onto W;:
g;(t) = % b;[k]w; (t)

with
b[k] = (f(t), w;(t))




Biorthogonal Wavelet Bases

Two scaling functions and two wavelets:
Synthesis:

o(t) = sz:fo[k] (2t - k)
w(t) = 2 3f,[K] ¢(2t - k)
Analysis:

b(t) = 2 ho[K] (2t - k)
w(t) = 2 hy[-k] §(2t - k)




Two sets of multiresolution spaces:
{0}c...VocV,c..cV,c...cL¥D)

~

{0} < ...V, CT/1 C ... c\“;‘j C ... c L¥(1)
V,+W, =V,
VW, = ¥,
Spaces are orthogonal w.r.t. each other i.e.
V, h W, V, h W,
V, has a basis {¢(t — k) : -0 <k <}
\70 has a basis {$(t—k) : =00 < Kk <0}

W, has a basis {w(t — k): - 0 < k < 0}

VTI0 has a basis {le(t — k): - 0 < k < 0}




Bases are orthogonal w.r.t. each other i.e.

)G (t—K)dt = 5[k] [o(t) W(t—Kk)dt = 0
Ww(t)o(t-k)dt =0 w(t) w(t — k)dt = S[K]
Equivalent to perfect reconstruction conditions on filters

Representation of functions in a biorthogonal basis:
fit) = T cyo(t—k) + >3 d,, 292 w(2it - K)
=0k

c, = If(t) ot - k) dt
d;, = 202 [f(t) w(2it — k) dt




Similarly, we can represent f(t) in the dual basis
f(t) = S € Jt—k) +3 3 d,, 22 W(2t— k)
k j=0 k

c, = [f(t) o(t— k) dt

d, = 202 [f(t) w(2it - k) dt

Note: When f,[k] = h,[-k] and f,[k] = h,[-k], we have
B(t) = o) => V; =V,

~

w(t) = w(t)=> W, = W,

I.e. we have orthogonal wavelets!
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Connection between orthogonal wavelets and
orthogonal filters

Start with the orthonormality requirement on scaling
functions

3In =_[4(0) 6(t—n) o

And then change scale using the refinement equation:

3n] = [2 Tholklo(2t - k) 2 Thylllé(2(t - n)-)
= 43 hglK] 3 hyfl] [o(1) d(c + k — 2n - )dr/2
k =00
= 25 hy[k] T hy[l] 5[-k + 2n + I]
k |

3[n] = 23 hy[K] holk ~2n)

This is the “double shift” orthogonality condition that
we previously encountered for orthogonal filters.
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So orthogonal filters are necessary for orthogonal
wavelets. Are they sufficient?

Consider the cascade algorithm
N
001 (1) = 23 ho[KIo® (2t~ K)

If the filters are orthogonal and

o0

| 6@ (t) 9Ot — n)dt = 3[n]

=00

then

o0

J o+ () 90+ I(t - n)dt = [n]
Our initial guess for the iteration was ¢9(t) = box on [0,1]
which is orthonormal w.r.t. its shifts. By induction,
we have j(l)(t) ¢(t — n)dt = J[n] as the limit, provided that

the cascade algorithm converges.
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Note: with the alternating flip requirement, which was
necessary for the highpass filter in the case of
orthogonal filters, we can show that

jw(t) w(t — n)dt = J[n]
and
_j(l)(t) w(t—-n)dt = 0
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Orthogonality in the Frequency Domain
Let

aln] = [4(t) o(t— n)d

Use Parseval’s theorem
A _ « :
aln] = 2 [9(©) dQ) e d0 = 3 [|3(@)|%e do

Trick: split integral over entire Q axis into a sum of

integrals over Zn intervals

a[n] = X J | 5(Q + 27K} |2 eit@ + 2xkn g

1 T

Pl 6 (Q + 27k) | 2™ dre
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Take the Discrete Time Fourier Transform of both sides
00 A
A(@) = Y alnleson = 3 | ¢(o + 2nk)|*

If (t — n) are orthonormal, then a[n] = J[n]
= A(n) =
So the scaling function and it shifts are orthogonal if

5 |9(o + 2nk) |2 =

=00

Note: if we set ® = 0, then
z|<|>(2nk)|2 =

and smce <|>(0) = 1, we see that

<|)(2nk) =0 fork #0
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Connection between orthogonal wavelets and
orthogonal filters (in frequency domain):

Start with an orthogonal scaling function:
o0 A
= 2 |¢(o +21K)|*

and then change scale using the refinement equation in
the frequency domain:

¢(Q) = Hy(Q/2) $(C/2)
§ | Hy( /2 + k) | 2| & (2 + k) | 2
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Trick: split sum into even and odd
= £ [Hy(/2+ 2nk) |? & (U2 + 27K) |2 +

il Hy (/2 + n(2k + 1)) | 2] §(Q/2 + = (2k + 1)| 2
IHO(le)I2 |<|> (QI2 + 21K) |2 +
| Ho(Q2 + n)l k=z_oo|<|> (QI2+ 1 + 27K) | 2

But each of the two infinite sums is equal to 1

So the discrete time filter Hy(0w) must be orthogonal:

= [Hy(w)|? + | Hy(o + ) |?
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