# Course 18.327 and 1.130 Wavelets and Filter Banks

Mallat pyramid algorithm

## Pyramid Algorithm for Computing Wavelet Coefficients

Goal: Given the series expansion for a function  $f_j(t)$  in  $V_j$ 

$$f_j(t) = \sum_k a_j[k] \phi_{j,k}(t)$$

how do we find the series

$$f_{j-1}(t) = \sum_{k} a_{j-1}[k] \phi_{j-1,k}(t)$$

in V<sub>i-1</sub> and the series

$$g_{j-1}(t) = \sum_{k} b_{j-1}[k]w_{j-1,k}(t)$$

in W<sub>i-1</sub> such that

$$f_{i}(t) = f_{i-1}(t) + g_{i-1}(t)$$
 ?

### Example: suppose that $\phi(t) = box$ on [0,1]. Then functions in $V_1$ can be written either as a combination of





or as a combination of





#### plus a combination of





$$\phi(2t) = \frac{1}{2}[\phi(t) + w(t)]$$
  
 $\phi(2t-1) = \frac{1}{2}[\phi(t) - w(t)]$ 

Suppose that f(t) is a function in L<sup>2</sup>(R). What are the coefficients, a<sub>j</sub>[k], of the projection of f(t) on to V<sub>j</sub>?
 Call the projection f<sub>i</sub>(t),

$$f_j(t) = \sum_{k} a_j[k] \phi_{j,k}(t)$$

a<sub>i</sub>[k] must minimize the distance between f(t) and f<sub>i</sub>(t)

$$\frac{\partial}{\partial a_{j}[k]} \int_{-\infty}^{\infty} \{f(t) - f_{j}(t)\}^{2} dt = 0$$

$$\int_{-\infty}^{\infty} 2 \{f(t) - \sum_{l} a_{j}[l] \phi_{j,l}(t)\} \phi_{j,k}(t) dt = 0$$

$$a_{j}[k] = \int f(t) \phi_{j,k}(t) dt$$

$$f_{j}(t)$$

How does φ<sub>i,k</sub>(t) relate to φ<sub>j-1,k</sub>(t), w<sub>j-1,k</sub>(t)?

$$\phi_{j-1,k}(t) = \sqrt{2} \sum_{\ell=0}^{N} h_0[\ell] \phi_{j,2k+\ell}(t)$$

Similarly, using the wavelet equation, we have

$$w_{j-1,k}(t) = \sqrt{2} \sum_{\ell=0}^{N} h_1[\ell] \phi_{j,2k+\ell}(t)$$

#### **Multiresolution decomposition equations**

$$a_{j-1}[n] = \int_{\infty}^{\infty} f(t)\phi_{j-1,n}(t) dt$$

$$= \sqrt{2} \sum_{\ell} h_0[\ell] \int_{-\infty}^{\infty} f(t)\phi_{j,2n+\ell}(t) dt$$

$$= \sqrt{2} \sum_{\ell} h_0[\ell] a_j[2n+\ell]$$
So
$$a_{j-1}[n] = \sqrt{2} \sum_{k} h_0[k-2n] a_j[k]$$

 $\rightarrow$  Convolution with  $h_0[-n]$  followed by downsampling

Similarly
$$b_{j-1}[n] = \int_{-\infty}^{\infty} f(t) w_{j-1,n}(t) dt$$

#### which leads to

$$b_{j-1}[n] = \sqrt{2} \sum_{k} h_1[k-2n] a_j[k]$$

#### **Multiresolution reconstruction equation**

#### **Start with**

$$f_j(t) = f_{j-1}(t) + g_{j-1}(t)$$

Multiply by  $\phi_{i,n}(t)$  and integrate

$$\int_{-\infty}^{\infty} f_j(t) \phi_{j,n}(t) dt = \int_{-\infty}^{\infty} f_{j-1}(t) \phi_{j,n}(t) dt + \int_{-\infty}^{\infty} g_{j-1}(t) \phi_{j,n}(t) dt$$

$$a_{j}[n] = \sum_{k} a_{j-1}[k] \int_{-\infty}^{\infty} \phi_{j-1,k}(t) \phi_{j,n}(t) dt +$$

$$\sum_{k} b_{j-1}[k] \int_{-\infty}^{\infty} w_{j-1,k}(t) \phi_{j,n}(t) dt$$

$$\int_{-\infty}^{\infty} \phi_{j-1,k}(t) \phi_{j,n}(t) dt = \sqrt{2} \sum_{\ell} h_0[\ell] \int_{-\infty}^{\infty} \phi_{j,2k+\ell}(t) \phi_{j,n}(t) dt$$

$$= \sqrt{2} \sum_{\ell} h_0[\ell] \delta[2k + \ell - n]$$

$$= \sqrt{2} h_0[n - 2k]$$

Similarly 
$$\int_{-\infty}^{\infty} w_{j-1,k}(t)\phi_{j,n}(t) dt = \sqrt{2} h_1[n-2k]$$

#### **Result:**

$$a_{j}[n] = \sqrt{2} \sum_{k} a_{j-1}[k]h_{0}[n - 2k] + \sqrt{2} \sum_{k} b_{j-1}[k]h_{1}[n - 2k]$$

#### **Filter Bank Representation**



$$\tilde{h}_0[n] = h_0[-n]$$

$$\tilde{h}_1[n] = h_1[-n]$$

Verify that filter bank implements MRA equations:

$$u_0[n] = \sqrt{2} \sum_{k} \tilde{h}_0[n - k]a_j[k]$$
  
=  $\sqrt{2} \sum_{k} h_0[k - n]a_j[k]$ 

$$\begin{array}{l} a_{j\text{-}1}[n] = u_0[2n] & \text{downsample by 2} \\ &= \sqrt{2} \sum\limits_{k} h_0[k-2n] a_j[k] \\ b_{j\text{-}1}[n] = u_1[2n] \\ &= \sqrt{2} \sum\limits_{k} h_1[k-2n] a_j[k] \\ a_j[n] = \sqrt{2} \sum\limits_{\ell} h_0[n-\ell] v_0[\ell] + \sqrt{2} \sum\limits_{\ell} h_1[n-\ell] v_1[\ell] \\ &\qquad \qquad a_{j\text{-}1}[0] \ a_{j\text{-}1}[1] \ v_0[n] \\ v_0[\ell] = \left\{ \begin{array}{ll} a_{j\text{-}1}[\ell/2] & ; \ \ell \ \text{even} \end{array} \right. \\ 0 & ; \ \text{otherwise} \end{array}$$