Course 18.327 and 1.130 Wavelets and Filter Banks

Accuracy of wavelet approximations (Condition A); vanishing moments; polynomial cancellation in filter banks

Accuracy of Wavelet Approximations

Biorthogonal case:

$$\widetilde{\phi}(t) = 2\sum_{n} h_0[-n]\widetilde{\phi}(2t-n) \qquad \qquad \phi(t) = 2\sum_{n} f_0[n]\phi(2t-n)$$

$$\widetilde{w}(t) = 2\sum_{n} h_1[-n]\widetilde{\phi}(2t-n) \qquad \qquad w(t) = 2\sum_{n} f_1[n]\phi(2t-n)$$

Biorthogonality means

$$\int_{-\infty}^{\infty} \phi(t) \, \widetilde{\phi}(t-n) dt = \delta[n]$$

$$\int_{-\infty}^{\infty} w(t) \, \widetilde{w}(t-n) dt = \delta[n]$$

$$\int_{-\infty}^{\infty} \psi(t) \, \widetilde{w}(t-n) dt = 0$$

$$\int_{-\infty}^{\infty} w(t) \, \widetilde{\phi}(t-n) dt = 0$$

Suppose that
$$F_0(z)$$
 has p zeros at $z=-1$ $H_1(z)=F_0(-z) \longrightarrow p$ zeros at $z=1$ i.e.
$$\frac{\partial^\ell}{\partial z^\ell} \ H_1(z)\big|_{z=1} = 0 \quad \text{for } \ell=0,1,2,...,p-1$$
 $H_1(z)\big|_{z=1} = \sum_n h_1[n]z^{-n}\big|_{z=1} = \sum_n h_1[n]$
$$\frac{\partial}{\partial z} \ H_1(z)\big|_{z=1} = \sum_n (-n)h_1[n]z^{-n-1}\big|_{z=1} = -\sum_n n \ h_1[n]$$

$$\frac{\partial^2}{\partial z^2} \ H_1(z)\big|_{z=1} = \sum_n (-n)(-n-1)h_1[n]z^{-n-2}\big|_{z=1} = \sum_n n^2h_1[n]$$
 etc. So
$$\sum n^\ell \ h_1[n] = 0 \qquad \text{for } \ell=0,1,2,...,p-1$$

Consider the moments of the analysis wavelet:

$$\int_{-\infty}^{\infty} t^{\ell} \widetilde{w}(t) dt = 2 \sum_{n} h_{1}[-n] \int_{-\infty}^{\infty} t^{\ell} \widetilde{\phi}(2t - n) dt$$

$$= 2 \sum_{n} h_{1}[-n] \int_{-\infty}^{\infty} (\frac{\tau + n}{2})^{\ell} \widetilde{\phi}(\tau) d\tau/2$$

$$= \frac{1}{2^{\ell}} \sum_{n} h_{1}[-n] \int_{-\infty}^{\infty} \sum_{i=0}^{\ell} {\ell \choose i} \tau^{\ell-i} n^{i} \widetilde{\phi}(\tau) d\tau$$

$$= \frac{1}{2^{\ell}} \sum_{i=0}^{\ell} {\ell \choose i} (\sum_{i=0}^{\ell} h_{1}[n] n^{i}) (-1)^{i} \int_{-\infty}^{\infty} \tau^{\ell-i} \widetilde{\phi}(\tau) d\tau$$

$$= \frac{1}{2^{\ell}} \sum_{i=0}^{\ell} {\ell \choose i} (\sum_{i=0}^{\ell} h_{1}[n] n^{i}) (-1)^{i} \int_{-\infty}^{\infty} \tau^{\ell-i} \widetilde{\phi}(\tau) d\tau$$

$$= 0$$
if $0 \le i < p$

So the analysis wavelet has p vanishing moments:

$$\int_{-\infty}^{\infty} t^{\ell} \widetilde{w}(t) dt = 0 \text{ for } \ell = 0, 1, 2, ..., p - 1$$

What do vanishing moments mean? $_{p-1}$ Try expanding the polynomial $\sum_{\ell=0}^{p-1}$ wavelet basis:

$$\sum\limits_{\ell=0}^{p\text{-1}}\alpha_\ell t^\ell$$
 in a

$$P(t) = \sum_{\ell=0}^{p-1} \alpha_{\ell} t^{\ell} = \sum_{k} c_{0,k} \phi_{0,k}(t) + \sum_{j \geq 0} \sum_{k} d_{j,k} w_{j,k}(t)$$

Then

$$d_{j,k} = \int_{-\infty}^{\infty} P(t)\widetilde{w}_{j,k} (t) dt = \int_{\ell=0}^{p-1} \alpha_{\ell} 2^{j/2} \int_{-\infty}^{\infty} t^{\ell} \widetilde{w}(2^{j}t - k) dt$$
$$= 0$$

i.e. polynomials of degree p – 1 can be expressed as a linear combination of scaling functions:

$$\sum_{\ell=0}^{p-1} \alpha_{\ell} t^{\ell} = \sum_{k} c_{0,k} \phi(t-k) \text{ for some } c_{0,k}$$

Example (orthogonal wavelets)

$$f(t) = t^{\ell}$$

$$f_{0}(t) = \sum_{k} a_{0}[k] \phi(t - k) \in V_{0}; a_{0}[k] = \int_{-\infty}^{\infty} t^{\ell} \phi(t - k) dt$$

$$g_{0}(t) = \sum_{k} b_{0}[k] w(t - k) \in W_{0}; b_{0}[k] = \int_{-\infty}^{\infty} t^{\ell} w(t - k) dt$$

Suppose that $\phi(t)$ comes from a spline of degree p-1 (h₀[n] has p zeros at π) with $p-1 \ge \ell$.

Then we can write

$$t^{\ell} = \sum_{k} a[k] \phi(t - k)$$

The expansion coefficients are easily found since

$$\phi(t - k)$$
 are orthonormal:

$$a[k] = \int_{-\infty}^{\infty} t^{\ell} \phi(t - k) dt$$

Also, since V_i h W_i, we have

$$\int_{-\infty}^{\infty} t^{\ell} w(t-n) dt = \sum_{k} a[k] \int_{-\infty}^{\infty} \phi(t-k) w(t-n) dt = 0$$

→ vanishing moment property

So we have

$$f_0(t) = t^{\ell}$$

$$g_0(t) = 0$$

$$V_{j+1} = V_j \oplus W_j \Rightarrow f_{j+1}(t) = f_j(t) + g_j(t)$$

$$f_1(t) = f_0(t) + g_0(t) = t^{\ell}$$

All f_i(t) are the same as f(t)!

Polynomial Data

Suppose x[n] = 1 for $n \ge 0$ (unit step).

$$X(z) = \sum_{n=0}^{\infty} z^{-n}$$

$$\frac{d}{dz} X(z) = -\sum_{n=0}^{\infty} nz^{-n-1}$$

$$\frac{d^2}{dz^2} X(z) = \sum_{n=0}^{\infty} n(n+1)z^{-n-2}$$

$$\vdots$$

$$\frac{d^{k}}{dz^{k}} X(z) = (-1)^{k} \sum_{n=0}^{\infty} n(n+1)...(n+k-1)z^{-n-k}$$

But we know that

$$X(z) = \frac{1}{1-z^{-1}}$$
 ; $|z| > 1$

So

$$\frac{d}{dz}X(z) = \frac{-z^{-2}}{(1-z^{-1})^2}$$

$$\frac{d^2}{dz^2}X(z) = \frac{2z^{-3}}{(1-z^{-1})^3}$$

$$\vdots$$

$$\frac{d^{k}}{dz^{k}} X(z) = \frac{(-1)^{k}k! z^{-k-1}}{(1-z^{-1})^{k+1}}$$

So if

$$x[n] = n(n + 1)(n + 2) ... (n + p - 2) ; n \ge 0$$

polynomial of degree p - 1

then

$$X(z) = \frac{(p-1)! z^{-1}}{(1-z^{-1})^p}$$
; $|z| > 1$

Polynomial Data and Condition A_p

Consider Daubechies' filters

$$H_0(z) = (1 + z^{-1})^p Q(z)$$
 p zeros at $z = -1$
 $H_1(z) = -z^{-N} H_0(-z^{-1})$
 $= (1 - z^{-1})^p R(z)$; $R(z) = (-1)^{p-1} z^{-N+p} Q(-z^{-1})$

Suppose that the input data is a polynomial of degree p-1:

$$x[n] = \sum_{k=0}^{p-1} a[k] S_p[n-k]$$
 combination of shifts of $S_p[n]$

where

$$S_p[n] = n(n + 1)(n + 2)...(n + p - 2)$$
 for $n \ge 0$

z-transform is

$$X(z) = \sum_{k=0}^{p-1} a[k] \frac{z^{-k}(p-1)! z^{-1}}{(1-z^{-1})^p}$$
$$= \frac{(p-1)! z^{-1} A(z)}{(1-z^{-1})^p} ; |z| > 1$$

Lowpass channel:

$$V_0(z) = H_0(z) X(z) = \frac{(p-1)! z^{-1} A(z)(1 + z^{-1})^p Q(z)}{(1 - z^{-1})^p}$$

So

 $v_0[n]$ is a polynomial of degree p – 1.

$$y_0[n] = v_0[2n]$$

 \Rightarrow $y_0[n]$ is a polynomial of degree p – 1.

Highpass channel:

$$V_1(z) = H_1(z) X(z) = \frac{(p-1)! z^{-1} A(z)(1 - z^{-1})^p R(z)}{(1 - z^{-1})^p}$$

$$= (p-1)! z^{-1} A(z) R(z)$$

So $v_1[n]$ has finite length (even though x[n] has infinite length.)

$$y_1[n] = v_1[2n]$$

 \Rightarrow y₁[n] has finite length

i.e.

 $y_1[n] = 0$, except for startup/boundary effects.