Course 18.327 and 1.130 Wavelets and Filter Banks

Smoothness of wavelet bases: Convergence of the cascade algorithm (Condition E); Splines. Bases vs. frames.

Smoothness of Wavelet Bases

Use eigenvalue analysis to study convergence of the cascade algorithm and smoothness of resulting scaling function.

The cascade algorithm revisited:

$$\phi^{(i+1)}(t) = 2\sum_{k} h_0[k] \phi^{(i)}(2t-k)$$

Consider the behavior of the inner products

$$a^{(i)}[n] = \int_{-\infty}^{\infty} \phi^{(i)}(t) \phi^{(i)}(t+n) dt$$

as $i \to \infty$ to understand convergence.

$$\begin{split} a^{(i+1)}[n] &= \int\limits_{-\infty}^{\infty} \{2\sum_{k}h_{0}[k]\varphi^{(i)}(2t-k)\}\{2\sum_{\ell}h_{0}[\ell]\varphi^{(i)}(2t+2n-\ell)\}dt \\ &= 2\sum_{\ell}h_{0}[\ell]\sum_{k}h_{0}[k] \ a^{(i)}[k+2n-\ell] \\ &= 2\sum_{\ell}h_{0}[\ell]\sum_{m}h_{0}[m-2n+\ell] \ a^{(i)}[m] \\ &= 2\sum_{r}h_{0}[2n-r]\sum_{m}h_{0}[-(r-m)]a^{(i)}[m] \\ &= \prod_{r} \uparrow \\ &\text{Filter with $h_{0}[n]$} \quad \text{Filter with $h_{0}[-n]$} \\ &\text{and then downsample} \end{split}$$

In matrix form:

$$\underline{\underline{a}^{(i+1)}} = (\downarrow 2) \ 2 \ H_0 H_0^T \ \underline{\underline{a}^{(i)}} ; \qquad H_0 \rightarrow \text{Toeplitz}$$

$$\underline{\text{matrix}}$$

Iteration converges if the eigenvalues of the transition matrix T satisfy

$$|\lambda| \leq 1$$

with only a simple eigenvalue at $\lambda = 1$.

Splines

Splines are scaling functions whose filters only have zeros at π i.e.

$$H_0(\omega) = (\frac{1+e^{-i\omega}}{2})^p$$

 $h_0[n] = \frac{1}{2^p}(\frac{p}{n})$; $n = 0, 1, ..., p$ binomial coefficients

Consider p = 1
$$\phi(t) = \frac{1}{0} \frac{1}{1}$$

$$\phi(\Omega) = e^{-i\Omega/2} \frac{\sin \Omega/2}{\Omega/2}$$

What happens when p = 2?

$$H_{0}(\omega) = \left(\frac{1 + e^{-i\omega}}{2}\right) \left(\frac{1 + e^{-i\omega}}{2}\right)$$

$$H_{0}^{1}(\omega) \quad H_{0}^{2}(\omega)$$

$$\phi(\Omega) = \prod_{j=1}^{\infty} H_{0}(\Omega/2^{j})$$

$$= \prod_{j=1}^{\infty} H_{0}^{1}(\Omega/2^{j}) \cdot \prod_{j=1}^{\infty} H_{0}^{2}(\Omega/2^{j})$$

$$= \phi^{1}(\Omega) \cdot \phi^{2}(\Omega)$$

$$= (e^{-i\Omega/2} \frac{\sin \Omega/2}{\Omega})^{2}$$

$$\phi(t) = \frac{1}{0} + \frac{1}{0} +$$

More generally

$$\phi(\Omega) = \left(e^{-i\Omega/2} \frac{\sin \Omega/2}{\Omega/2}\right)^p$$

$$\phi(t) = \phi_{\text{box}}(t) + \phi_{\text{box}}(t) + \dots + \phi_{\text{box}}(t) \qquad (p)$$

(p terms)

 $\phi(t)$ is piecewise polynomial of degree p – 1. The derivatives, $\phi^{(s)}(t)$, exist for $s \le p-1$ and they are continuous for $s \le p-2$.

e.g. Cubic spline (p = 4) is C^2 continuous.

Alternatively, measure smoothness in L² sense:

$$||\mathring{\phi}^{(s)}(t)||^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |(i\Omega)^{s} \mathring{\phi}(\Omega)|^{2} d\Omega \quad \text{(by Plancherel)}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \Omega^{2s} \frac{4^{p} |\sin \Omega/2|^{2p}}{\Omega^{2p}} d\Omega$$

$$< \infty$$
 when $2s - 2p < -1$

Note:
$$\int_{-\infty}^{\infty} \frac{1}{\Omega} d\Omega$$
 is limiting case

So, $\phi(t)$ has s derivatives in the L² sense for all $s < s_{max}$, where

$$s_{max} = p - \frac{1}{2}$$

Valid for splines

Non-spline Scaling Functions In general, we have

$$H_0(\omega) = \left(\frac{1 + e^{-i\omega}}{2}\right)^p Q(\omega)$$

so that

$$\phi(t) = \phi_p(t) * \phi_q(t)$$
pth order ugly
spline

Notice that the approximation power of $\phi(t)$ comes entirely from $\phi_{D}(t)$:

Suppose that we write

$$\sum_{k} c_{k} \phi_{p}(t - k) = t^{\ell}$$

for some ℓ (0 $\leq \ell < p$).

Then we have

$$\sum_{\mathbf{k}} \mathbf{c}_{\mathbf{k}} \, \phi(\mathbf{t} - \mathbf{k}) = \phi_{\mathbf{q}}(\mathbf{t}) * \mathbf{t}^{\ell}$$

$$= \int_{-\infty}^{\infty} \phi_{\mathbf{q}}(\tau) (\mathbf{t} - \tau)^{\ell} \, d\tau$$

$$= \sum_{i=0}^{\ell} \left(\int_{i}^{\ell} \right) \int_{-\infty}^{\infty} \phi_{\mathbf{q}}(\tau) (-\tau)^{\ell-i} \, d\tau \cdot \mathbf{t}^{i}$$

$$\alpha_{i}$$

= polynomial of degree ℓ .

What about smoothness (in L² sense)? Smoothness is given by

$$s_{max} = p - \frac{1}{2} \log_2 |\lambda_{max}(T_Q)|$$

where

 $T_Q = (\downarrow 2)2QQ^T$ Transition matrix for $Q(\omega)$ Alternatively, look at the transition matrix for $H_0(\omega)$, $T = (\downarrow 2)2H_0H_0^T$

T has 2p special eigenvalues due to the zeros at π :

$$\lambda = 1, \frac{1}{2}, \frac{1}{4}, \dots, (\frac{1}{2})^{2p-1}$$

Disregard these eigenvalues and look at the largest non-special eigenvalue, λ_{max} . Then the smoothness is given by

$$s_{max} = -\frac{1}{2}log_2 | \lambda_{max}(T) |$$
$$\lambda_{max}(T) = 4^{-s_{max}}$$