Course 18.327 and 1.130
Wavelets and Filter Banks

Numerical solution of PDEs: Galerkin

approximation; wavelet integrals
(projection coefficients, moments and
connection coefficients); convergence




Numerical Solution of Differential Equations

Main idea: look for an approximate solution that lies in V;.
Approximate solution should converge to true
solution as | — .

Consider the Poisson equation
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Approximate solution:

Uapprox(X) = 2 [k]2/* (2 x - k)
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Method of weighted residuals: Choose a set of test
functions, g,(x), and form a system of equations
(one for each n).

J- 0°U 45 r0x gn(x)dx — J-f()()gn()() ad X

0Xx?2
One possibility: choose test functions to be Dirac

delta functions. This is the collocation method.

g,(x) = &(x —n/2) n integer

2. c[K]q@(n/2)) = f(n/2)
k




Second possibility: choose test functions to be
scaling functions.

e Galerkin method if synthesis functions are used
(test functions =trial functions)
e Petrov-Galerkin method if analysis functions are used

e.g. Petrov-Galerkin

P~

gn(x) = (H,n(x) [] ;/j

¥ ll | 2900 - 9,00 dx = [1008,(0) dx

Note: Petrov-Galerkin = Galerkin in orthogonal case




Two types of integrals are needed.:
(a) Connection Coefficients
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|29, (x) . §n00dx = 27 | 202 (23x - K)22@(2)x - n)dx
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= ZZJ_E(ﬂ’(T)?p(T +k —n) dt

= ZZjhaZ/ax2 [n —k]

where h. ,[n] is defined by
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connection coefficients




(b) Expansion coefficients

The integrals_if(x)?g,n(x)dx are the coefficents for
the expansion of f(x) In V.
fi(x) = % iK1 @ (X)

with

K] :_jf(x) @ (%) dx

So we can write the system of Galerkin equations as

a convolution:
243 clklhgpeln K] = rn]




—Solve a deconvolution problem to find c[k] and
then find u,,,,, USING equation .

Note: we must allow for the fact that the solution may
be non-unique, I.e. Hy;,2(w) may have zeros.

Familiar example: 3-point finite difference
operator

haz/axz[n] — {1, '2, 1}
Hazlaxz(Z) = 1-2z1+2z72 = (1 — Z_l)2
= Hgg,2(w) has a 2" order zero at w = O.

Suppose uy(x) is a solution. Then uy(x) + AX + Bis
also a solution. Need boundary conditions to fix

uapprox(x)-




Determination of Connection Coefficients

Nazigeln] = oi @ (t) ?p(t — n)dt
Simple numerical quadrature will not converge if
@ (t) behaves badly.

Instead, use the refinement equation to formulate an

eigenvalue problem.
o) = 23 folklg(2t ~ k)
¢'(t) = 82 folk]g'(2t — k)

N

@t —n) = 2€Zh0[€](~[3(2t—2n -0)
So

Multiply and
Integrate

hazeen] = 8 % LY % holllhgzjeecl2n + £ - K]




p=3 scaling function

Daubechies 6
scaling function

Derivative of the p=3 scaling function

i

First derivative
of Daubechies 6
scaling function




Reorganize as
hazaeln] = 8% ho[m — 2”](% folm — K]hgz a2 K])

m = 2n +/
Matrix form

Need a normalization condition— use the moments
of the scaling function:

If hy[n] has at least 3 zeros at 1T, we can write

(00}

> polKlg(t = k) = 2 ; polk] = | t2¢(t — k)dt

-00

Differentiate twice, multiply by E)(t) and integrate:

> Wo[klhgza2[- k] = 2! —>Normalizing condition
Kk
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Formula for the moments of the scaling function
Wy L Jte(t - k)dT
Recursive formula

= I(p(r)dr =

— 2r 1 Z( )(Z holKIK" - ')Ho
= Z( )k“uo




How to enforce boundary conditions?

One idea — extrapolate a polynomial'

u(x) = 2 clkjgy(x) = Za[fle
Relate c[k] to a[é] through moments. Extend c[K]
by extending underlying polynomial.

Extrapolated polynomial should satisfy boundary

constraints:

Dirichlet:
p-1

u(xe) = a = Za[é]xo =a Constraint
Neumann: _ >on al/]
U(xp) = B =S allix, = B




Convergence
Synthesis scaling function:

o) = 2% folklg2x K

We used the shifted and scaled versions, @ ,(x), to
synthesize the solution. If Fy(w) has p zeros at 1, then
we can exactly represent solutions which are degree
p — 1 polynomials.

In general, we hope to achieve an approximate solution
that behaves like

u(x) = Zk:C[k](H,k(X) + O(hP)
where

h = % = spacing of scaling functions




Reduction In error as a function of h
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Multiscale Representation

e.g. 02u/ox? = f
Expand as

= % C (X —K) + JZ % d; \W(2 x-Kk)
=0

Galerkin gives a system
Ku = f
with typical entries

Kpp = 22 Iaxzw(x — n)w(x-m)dx




Effect of Preconditioner

Multiscale equations: (WKWT)(Wu) = Wf
Preconditioned matrix: K,.. = DWKW'D

Simple diagonal preconditioner

ning,

condition number
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Matlab Example

Numerical solution of Parti al
Differential Equations




The Problem

. Helmholtz equation: u,, +au =f
P=06; % Order of wavelet scheme (p,,i,=3)
a=0
L = 3; % Period.
nmin =2; % Minimum resolution
nmax =7; % Maximum resolution




Solution at Resolution 2

Solution to the Helmholtz equation u,  +a u = fwith periodic boundary conditions
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Solution at Resolution 3

Solution to the Helmholtz equation u,,, + & u= fwith periodic boundary conditions
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Solution at Resolution 4

Solution to the Helmholtz equation u,,, + & u= fwith periodic boundary conditions
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Solution at Resolution 5

Solution to the Helmholtz equation o, +a u = fwith periodic boundary conditions
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Solution at Resolution 6

=olution to the Helmholtz equation u, . +a u = fwith periodic boundary conditions
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Solution at Resolution 7

=olution to the Helmholtz equation u, . +a u = fwith periodic boundary conditions
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