Course 18.327 and 1.130 Wavelets and Filter Banks

Numerical solution of PDEs: Galerkin approximation; wavelet integrals (projection coefficients, moments and connection coefficients); convergence

Numerical Solution of Differential Equations

Main idea: look for an approximate solution that lies in V_j . Approximate solution should converge to true solution as $j \to \infty$.

Consider the Poisson equation

$$\frac{\partial^2 \mu}{\partial x^2} = f(x)$$
 ----- (leave boundary conditions till later)

Approximate solution:

$$u_{approx}(x) = \sum_{k} c[k] 2^{j/2} \phi(2^{j} x - k) ---- \phi_{j,k}(x)$$

$$trial functions$$

Method of weighted residuals: Choose a set of test functions, $g_n(x)$, and form a system of equations (one for each n).

$$\int \frac{\partial^2 u_{approx}}{\partial x^2} g_n(x) dx = \int f(x)g_n(x) dx$$

One possibility: choose test functions to be Dirac delta functions. This is the collocation method.

$$g_n(x) = \delta(x - n/2^j)$$
 n integer

$$\Rightarrow \sum_{k} c[k] \phi_{j,k}''(n/2^{j}) = f(n/2^{j})$$

Second possibility: choose test functions to be scaling functions.

- Galerkin method if synthesis functions are used (test functions = trial functions)
- Petrov-Galerkin method if analysis functions are used

e.g. Petrov-Galerkin

$$g_n(x) = \widetilde{\phi}_{j,n}(x) \in \widetilde{V}_j$$

$$\Rightarrow \sum_{k} c[k] \int_{-\infty}^{\infty} \frac{\partial^{2}}{\partial x^{2}} \phi_{j,k}(x) \cdot \widetilde{\phi}_{j,n}(x) dx = \int_{-\infty}^{\infty} f(x) \widetilde{\phi}_{j,n}(x) dx$$

Note: Petrov-Galerkin ≡ Galerkin in orthogonal case

Two types of integrals are needed: (a) Connection Coefficients

$$\int_{-\infty}^{\infty} \frac{\partial^2}{\partial x^2} \phi_{j,k}(x) \cdot \widetilde{\phi}_{j,n}(x) dx = 2^{2j} \int_{-\infty}^{\infty} 2^{j/2} \phi''(2^{j}x - k) 2^{j/2} \widetilde{\phi}(2^{j}x - n) dx$$

$$= 2^{2j} \int_{-\infty}^{\infty} \phi''(\tau) \widetilde{\phi}(\tau + k - n) d\tau$$

$$= 2^{2j} h_{\partial^2/\partial x^2} [n - k]$$

where $h_{\partial^2/\partial x^2}$ [n] is defined by

$$h_{\partial^2/\partial x^2}[n] = \int_{-\infty}^{\infty} \phi''(t)\widetilde{\phi}(t-n)dt$$

(b) Expansion coefficients

The integrals $\int_{-\infty}^{\infty} f(x) \widetilde{\phi}_{j,n}(x) dx$ are the coefficients for the expansion of f(x) in V_{i} .

$$f_j(x) = \sum_k r_j[k] \phi_{j,k}(x)$$

with

$$r_{j}[k] = \int_{-\infty}^{\infty} f(x) \, \tilde{\phi}_{j,k}(x) \, dx$$

So we can write the system of Galerkin equations as a convolution:

$$2^{2j}\sum_{k}c[k]h_{\partial^{2}/\partial x^{2}}[n-k] = r_{j}[n]$$

⇒Solve a deconvolution problem to find c[k] and then find u_{approx} using equation □.

Note: we must allow for the fact that the solution may be non-unique, i.e. $H_{\partial^2/\partial x^2}(\omega)$ may have zeros.

Familiar example: 3-point finite difference operator

$$h_{\partial^2/\partial x^2}[n] = \{1, -2, 1\}$$

 $H_{\partial^2/\partial x^2}(z) = 1 - 2z^{-1} + z^{-2} = (1 - z^{-1})^2$

 \Rightarrow $H_{\partial^2/\partial x^2}(\omega)$ has a 2nd order zero at $\omega = 0$.

Suppose $u_0(x)$ is a solution. Then $u_0(x) + Ax + B$ is also a solution. Need boundary conditions to fix $u_{approx}(x)$.

Determination of Connection Coefficients

$$h_{\partial^2/\partial x^2}[n] = \int_{-\infty}^{\infty} \phi''(t) \widetilde{\phi}(t-n)dt$$

Simple numerical quadrature will not converge if $\phi''(t)$ behaves badly.

Instead, use the refinement equation to formulate an eigenvalue problem.

So

$$h_{\partial^2/\partial x^2}[n] = 8 \sum_{k} f_0[k] \sum_{\ell} h_0[\ell] h_{\partial^2/\partial x^2}[2n + \ell - k]$$

Daubechies 6 scaling function

First derivative of Daubechies 6 scaling function

Reorganize as

$$h_{\partial^2/\partial x^2}[n] = 8\sum_{m} h_0[m-2n](\sum_{k} f_0[m-k]h_{\partial^2/\partial x^2}[k])$$

$$m = 2n + \ell$$
Matrix form
$$h_{\partial^2/\partial x^2} = 8 \text{ A B } h_{\partial^2/\partial x^2} \longrightarrow \text{eigenvalue problem}$$

Need a normalization condition — use the moments of the scaling function:

If $h_0[n]$ has at least 3 zeros at π , we can write

$$\sum_{k} \mu_{2}[k]\phi(t-k) = t^{2} ; \mu_{2}[k] = \int_{-\infty}^{\infty} t^{2}\widetilde{\phi}(t-k)dt$$

Differentiate twice, multiply by $\tilde{\phi}(t)$ and integrate:

$$\sum_{k} \mu_{2}[k] h_{\partial^{2}/\partial x^{2}}[-k] = 2! \longrightarrow Normalizing condition$$

Formula for the moments of the scaling function

$$μ_{\mathbf{k}}^{\ell} = \tilde{\mathbf{x}} \tau^{\ell} \phi(\tau - \mathbf{k}) d\tau$$

Recursive formula

$$\begin{split} \mu_0^0 &= \int_{-\infty}^{\infty} \phi(\tau) d\tau = 1 \\ \mu_0^r &= \frac{1}{2^r - 1} \sum_{i=0}^{r-1} \binom{r}{i} \binom{N}{k=0} h_0[k] k^{r-i} \mu_0^i \\ \mu_k^\ell &= \sum_{r=0}^{\ell} \binom{\ell}{r} k^{\ell-r} \mu_0^r \end{split}$$

How to enforce boundary conditions?

One idea – extrapolate a polynomial:

$$\mathbf{u}(\mathbf{x}) = \sum_{k} \mathbf{c}[k] \phi_{j,k}(\mathbf{x}) = \sum_{k} \mathbf{a}[\ell] \mathbf{x}^{\ell}$$

 $u(x) = \sum_{k} c[k]\phi_{j,k}(x) = \sum_{\ell=0}^{\infty} a[\ell]x^{\ell}$ Relate c[k] to a[\ell] through moments. Extend c[k] by extending underlying polynomial.

Extrapolated polynomial should satisfy boundary constraints:

Dirichlet:

$$u(x_0) = \alpha \Rightarrow \sum_{\ell=0}^{p-1} a[\ell] x_0^{\ell} = \alpha \qquad \text{Constraint}$$
 Neumann:
$$u'(x_0) = \beta \Rightarrow \sum_{\ell=0}^{p-1} a[\ell] \ell x_0^{\ell-1} = \beta$$

Convergence

Synthesis scaling function:

$$\phi(x) = 2 \sum_{k} f_0[k] \phi(2x - k)$$

We used the shifted and scaled versions, $\phi_{j,k}(x)$, to synthesize the solution. If $F_0(\omega)$ has p zeros at π , then we can exactly represent solutions which are degree p-1 polynomials.

In general, we hope to achieve an approximate solution that behaves like

$$u(x) = \sum_{k} c[k] \phi_{j,k}(x) + O(h^p)$$

where

$$h = \frac{1}{2^{j}}$$
 = spacing of scaling functions

Reduction in error as a function of h

Multiscale Representation

e.g. $\partial^2 u/\partial x^2 = f$ Expand as

$$u = \sum_{k} c_{k} \phi(x - k) + \sum_{j=0}^{J} \sum_{k} d_{j,k} w(2^{j} x-k)$$

Galerkin gives a system

$$Ku = f$$

with typical entries

$$K_{m,n} = 2^{2j} \int_{-\infty}^{\infty} \frac{\partial^2}{\partial x^2} w(x-n)w(x-m)dx$$

Effect of Preconditioner

- Multiscale equations: (WKW^T)(Wu) = Wf
- Preconditioned matrix: K_{prec} = DWKW^TD

Simple diagonal preconditioner

$$D = \begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & & \frac{1}{2} & & & \\ & & & \frac{1}{4} & & \\ & & & \frac{1}{4} & & \\ & & & & \frac{1}{4} \end{bmatrix}$$

Matlab Example

Numerical solution of Partial Differential Equations

The Problem

- 1. Helmholtz equation: $u_{xx} + a u = f$
 - p=6; % Order of wavelet scheme ($p_{min}=3$)
 - a = 0
 - L = 3; % Period.
 - *nmin* = 2; % Minimum resolution
 - nmax = 7; % Maximum resolution

Convergence Results

>> helmholtz slope = 5.9936