Course 18.327 and 1.130 Wavelets and Filter Banks

Sampling rate change operations: upsampling and downsampling; fractional sampling; interpolation

Definition:

N x[0] x[1] x[2] x[3] x[4] №

=

x[0] x[2] x[4] M

As a matrix operation:

| X[0] | x[1] | x[2] | x[3] | x[4] | M

: x[0] x[2] x[4] : :

Definition:

(12)

As a matrix operation:

Downsampling by 2

$$\begin{array}{c|c} x[n] & y[n] \\ \hline \end{array}$$

$$y[n] = x[2n]$$

$$Y(\omega) = \sum_{n} x[2n]e^{-i\omega n}$$

=
$$\sum x[m]e^{-i\omega m/2}$$

=
$$\frac{1}{2} \sum_{m} \{1 + (-1)^m\} \times [m]e^{-i\omega m/2}$$

=
$$\frac{1}{2} \{ \sum_{m} x[m]e^{-i\omega m} + \sum_{m} x[m]e^{-i(\frac{\omega}{2} + \pi)m} \} ;$$

$$(-1)^{m} = e^{-i\pi m}$$

=
$$\frac{1}{2} \{ X (\omega/2) + X (\omega/2 + \pi) \}$$

Downsampling by M

$$\overset{\textbf{x[n]}}{\rightarrow} \overset{\textbf{y[n]}}{\rightarrow}$$

$$y[n] = x[Mn]$$

$$\begin{split} Y(\omega) &= \sum_{m = nM} x[m] e^{-i\omega m/M} \\ &= \frac{1}{M} \sum_{m} \big\{ \sum_{k=0}^{M-1} e^{-i\frac{2\pi}{M}km} \big\} \ x[m] e^{-i\omega m/M} \ ; \\ &\frac{1}{M} \ \sum_{k=0}^{M-1} (e^{-i\frac{2\pi}{M}m})^k = \ \bigvee_{0}^{1} \text{if } m = nM \\ &\text{if } m \neq nM \end{split}$$

$$= \frac{1}{M} \sum_{k=0}^{M-1} X \left(\frac{\omega + 2 \pi k}{M} \right)$$

Upsampling by 2

$$\begin{array}{c|c} x[n] & & y[n] \\ \hline & \uparrow 2 & & \\ \hline \end{array}$$

$$y[n] = \begin{cases} x[n/2]; n \text{ even} \\ \omega & 0 \text{ ; n odd} \end{cases}$$

$$Y(\omega) = \sum_{\substack{n \text{ even}}} x[n/2]e^{-i\omega n}$$
$$= \sum_{\substack{m}} x[m]e^{-i\omega 2m}$$
$$= X(2\omega)$$

Upsampling by L

$$Y(\omega) = \sum_{n=mL} x[n/L] e^{-i\omega n}$$
$$= X(L\omega)$$

$$Y(\omega) = X(2\omega)$$

Interpolation Use lowpass filter after upsampling

Fractional Sampling

Consider

$$Y(\omega) = \frac{1}{M} \sum_{k=0}^{M-1} U\left(\frac{\omega + 2\pi k}{M}\right)$$
$$= \frac{1}{M} \sum_{k=0}^{M-1} X\left(\frac{\omega + 2\pi k}{M}L\right)$$

What about
$$x[n]$$
 $\downarrow M$ $d[n]$ $\uparrow L$ $y[n]$

$$Y(\omega) = D(\omega L)$$

$$= \frac{1}{M} \sum_{k=0}^{M-1} X \left(\frac{\omega L + 2\pi k}{M} \right)$$

Matlab Example 1

Basic filters, upsampling and downsampling.

Lowpass filter

Highpass filter

Linear interpolating lowpass filter

