Course 18.327 and 1.130
Wavelets and Filter Banks

Filter Banks (contd.): perfect

reconstruction: halfband filters and
possible factorizations.




Product Filter

Example: Product filter of degree 6
Po(z) = 1%(-1+9Z'2 + 1623 + 9z4 - z°)

Po(z) - Po(-2) = 2z%

P EXxpect perfect reconstruction with a 3 sample delay
Centered form:
P(z) = z3Py(2) = 11_6(- z3 + 92 + 16 + 9z1—779)
P(z) + P(-z) = 2 1i.e.even part of P(z) = const
In the frequency domain:

P(w) + Pw+p) = 2 Halfband Condition




Note antisymmetry
about w= p/2

P(w) is said to be a halfband filter.

How do we factor Py(z) into Hy(z) Fy(2)?
Po(z) = 1/16(1 + z1)4(-1 + 4z1- z?)
= -1/16(1 + z)42 + 03—z 1)(2 - B — z1)




So P,y(z) has zeros at
z = -1 (4™ order) )

z = 2+CB Note: 2 + @B =575

Im




Some possible factorizations

Hy(2)  (or Fy(2))

Fo(2)  (or Hy(2))

1
15(1 + 2°1)
i1 + z1)?
Yo(l+ 2z 2+ CB-z7)
1/8(1 + z'1)3

(B-1) (1+z1)%2+CB-z7)
42
1/16(1 + z'1)?

-1/16(1 + z)42 + B - z1)(2 - (B - z71)
-1/8(1 + 2232 + B -zY)(2- B -zY)
1A + 27022+ 3B -zY)(2 - B -zY)
-1/8(1 + z1)3(2 - B - )

1/2(L+ 202+ CB - zY) (2 - B - z29)

L (1+zY22-38-zY)

4(CB-1)_ -
-2+@B-zH)(2-AB-zY)




Case (b) -- Symmetric filters (linear phase)

filter length = 2 filter length = 6
{11} /¢{-1, 1, 8, 8, 1, -1}




Case (c) -- Symmetric filters (linear phase)

filter length = 3 filter length =5
a{l, 2,1} a{-1, 2,6, 2, -1}




Case (f) -- Orthogonal filters
(minimum phase/maximum phase)

filter length =4 filter length = 4
o 0 20
L A~1+CB, 3+C8B, 3-C8, 1-CB alo 4%1{13, 3-(8, 3+(B, 1+(B

4040
Note that, in this case, one filter is the flip (transpose)
of the other: f,[n] = hy[3 - n]

Fo(z) = z° Hy(zH)

(0




General form of product filter (to be derived later):

P(z) = 2(1”)'“(1”)'O (|O+k D25k

Po(z) = 2P D P(2)

(1+zl)2p22p1a (Pri-1)(-1)kz - Drk(1=2)"
123 1449444244444443

Binomial Q(2)
(spline) Cancels all odd powers
filter except z-2p-1)

Po(z) has 2p zeros at p (important for stability of iterated
filter bank.)
Q(z) factor is needed to ensure perfect reconstruction.




p =1
P,(z) has degree 2 ® leads to Haar filter bank.
1+2z1 F)_
+z1 — e 1, 1 -
1,1,1, 11— P— 2
1-z1 k)—

1o |o— —2 l5— 0. 0

O—
1+2z1

Fo(z) = 1+27%, Hy(z) =
Synthesis lowpass filter has 1 zero at p
® Leads to cancellation of constant signals in analysis

highpass channel.
Additional zeros at p would lead to cancellation of

higher order polynomials.




p =2

Py(z) has degree4p —2 = 6

Po(2)

(L+z9 5 { () 2 - (D))

1% (L+zH*(-1+ 4z71- 729

1%{- 1+9z2+ 1623 +9z%— 2%}

Possible factorizations
1/8 trivial
2/6 9.
3/5 O\Ollnear phase
4/4 orthogonal

(Daubechies-4)

11



p = 4
Py(z) has degree4p —2 = 14

O

8th order

=1l




Common factorizations (p = 4):
(a) 9/7 Known in Matlab
as bior4.4




(b) 8/8 (Daubechies 8) -- Known in Matlab as db4




Why choose a particular factorization’?
Con5|der the example with p =

One of the factors is halfband
The trivial 1/8 factorization is generally not desirable,
since each factor should have at least one zero at p.

However, the fact that F,(z) is halfband is interesting
In itself.

ve) > I_II | X(Z; I Fo(2) I >Y(Z)

Let F,(z) be centered, for convenience. Then
F,(z) = 1+ odd powers of z
Now

X(z) = V(z?) = even powers of z only



Y(2) = Fo(2) X(2)
X(z) + odd powers
y[n] o X[Nn] . n even
N

©& f,[k]x[n—k]: n odd
k odd

b f,[n] is an interpolating filter

sin (%)n
pNn

Another example: fy[n] =
(ideal bandlimited
Interpolating filter)



Il. Linear phase factorization e.g. 2/6, 5/3
Symmetric (or antisymmetric) filters are desirable for
many applications, such as image processing. All
frequencies in the signal are delayed by the same
amount i.e. there is no phase distortion.

h[n] linear phase b A(W)e—'(Wa+q)

real delays all\ Olf symmetric

frequencies
by a samples

|f antisymmetric

Linear phase may not necessarily be the best choice for
audio applications due to preringing effects.




lll. Orthogonal factorization
This leads to a minimum phase filter and a maximum
phase filter, which may be a better choice for
applications such as audio. The orthogonal
factorization leads to the Daubechies family of
wavelets — a particularly neat and interesting case.
4/4 factorization:

Ho(2) =5z (1 +z)?[(2 + CB) — z°1]

= = {(1+ CB) + (3+ (B)z1 + (3 -(B)z2 + (1- (B)ZY)

Fo(2) = 7ap @+ ZY2(2 - &B) - 2]

= 2273 (1+ 29)[(2 + GB) - 7]

=77 Hy (z7)




P(z) = zPy(2)

= Hy(z) Ho(z")
From alias cancellation condition:
Hi(z) = Fo(-2) = -z3 Hy(-z?1)

F1(z) = -Ho(-2) = z7° Hy(z%)




Special Case: Orthogonal Filter Banks

Choose H,(z) so that

Hy(2) = - 2N Ho(- 27)

Time domain

hyn] = (- 1" hy[N —n]

Fo(2) = Hy (-2) = 2N Hy(z Y
P foln] = ho[N—n]

Fi(2) = - Ho(-2) = 2N Hy(z?Y)

P fy[n] = hy[N—n]

So the synthesis filters, f,[n], are just the time-reversed
versions of the analysis filters, h,[n], with a delay.




Why is the Daubechies factorization orthogonal?
Consider the centered form of the filter bank:

Holz] >y [n]>- 2 Ho(z)
xIn] A—>

— | |no delay
H,[z]F>— 2>y [n]™- 2>—{Po(Z") [Fin centered
form

X[n]

Analysis bank Synthesis bank

causal — only anticausal — only

negative powers positive powers
of z of z




In matrix form:

AEWATES Synthesis

Yo
Y1 |

So

X = WTW x for any x

W'W = | = WWT

An important fact: symmetry prevents orthogonality




Matlab Example 2

1. Product filter examples




Degree-2 (p=1): pole-zero plot

Zeros of the product filter with degree 2
I I I

Imaginary Part

Real Part




Degree-2 (p=1): Freq. response

Frequency response of the product filter with degree 2
I I I I I
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Degree-6 (p=2): pole-zero plot

Zeros of the product filter with degree 6
I I I I
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Degree-6 (p=2): Freq. response

Frequency response of the product filter with degree 6
I I I I I
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Degree-10 (p=3): pole-zero plot

Zeros of the product filter with degree 10
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Degree-10 (p=3): Freq. response

Frequency response of the product filter with degree 10
I I I I I

Frequency response magnitude
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Degree-14 (p=4): pole-zero plot

Zeros of the product filter with degree 14
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Degree-14 (p=4): Freq. response

Frequency response of the product filter with degree 14
I I I I I I
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